'

Search results

Found 884 matches
Hall parameter (due to Hall effect in ionized gases)

The Hall parameter, β, in a plasma is the ratio between the electron gyro-frequency, and the electron-heavy particle collision frequency. In a plasma, the ... more

Coulomb's constant

Coulomb’s constant, the electric force constant, or the electrostatic constant (denoted ke ) is a proportionality constant in equations relating ... more

Gamma distribution (Skewness)

In probability theory and statistics, the gamma distribution is a two-parameter family of continuous probability distributions. The common exponential ... more

Conchoid of de Sluze (Cartesian coordinates)

The conchoid(s) of de Sluze is a family of plane curves. In Cartesian coordinates, the curves satisfy an implicit equation. They are rational, circular, ... more

Surface Feet per Minute (SFM)

Surface feet per minute (SFPM or SFM) is the combination of a physical quantity (surface speed) and an ... more

NTU method - actual heat transfer rate (q) (relative to the hot fluid)

The Number of Transfer Units (NTU) Method is used to calculate the rate of heat transfer in heat exchangers (especially counter ... more

Spindle Speed

Surface feet per minute (SFPM or SFM) is the combination of a physical quantity (surface speed) and an ... more

NTU method - actual heat transfer rate (q) (relative to the cold fluid)

The Number of Transfer Units (NTU) Method is used to calculate the rate of heat transfer in heat exchangers (especially counter ... more

Worksheet 296

(a) Calculate the buoyant force on 10,000 metric tons (1.00×10 7 kg) of solid steel completely submerged in water, and compare this with the steel’s weight.

(b) What is the maximum buoyant force that water could exert on this same steel if it were shaped into a boat that could displace 1.00×10 5 m 3 of water?

Strategy for (a)

To find the buoyant force, we must find the weight of water displaced. We can do this by using the densities of water and steel given in Table [insert table #] We note that, since the steel is completely submerged, its volume and the water’s volume are the same. Once we know the volume of water, we can find its mass and weight

First, we use the definition of density to find the steel’s volume, and then we substitute values for mass and density. This gives :

Density

Because the steel is completely submerged, this is also the volume of water displaced, Vw. We can now find the mass of water displaced from the relationship between its volume and density, both of which are known. This gives:

Density

By Archimedes’ principle, the weight of water displaced is m w g , so the buoyant force is:

Force (Newton's second law)

The steel’s weight is 9.80×10 7 N , which is much greater than the buoyant force, so the steel will remain submerged.

Strategy for (b)

Here we are given the maximum volume of water the steel boat can displace. The buoyant force is the weight of this volume of water.

The mass of water displaced is found from its relationship to density and volume, both of which are known. That is:

Density

The maximum buoyant force is the weight of this much water, or

Force (Newton's second law)

Discussion

The maximum buoyant force is ten times the weight of the steel, meaning the ship can carry a load nine times its own weight without sinking.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Ripple factor

For the root mean square value of the ripple voltage, the calculation is more involved as the shape of the ripple waveform has a bearing on the result. ... more

...can't find what you're looking for?

Create a new formula

Search criteria:

Similar to formula
Category