'

Search results

Found 1394 matches
Rayleigh Scattering - Intensity of Light from molecules

Rayleigh scattering (pronounced /ˈreɪli/ RAY-lee), named after the British physicist Lord Rayleigh (John William Strutt), is the (dominantly) elastic ... more

Rayleigh Scattering - Intensity of Light

Rayleigh scattering (pronounced /ˈreɪli/ RAY-lee), named after the British physicist Lord Rayleigh (John William Strutt), is the (dominantly) elastic ... more

Monatomic ideal gas heat capacity at constant pressure

Heat capacity or thermal capacity is a physical quantity equal to the ratio of the heat that is added to (or removed from) an object to the resulting ... more

Monatomic ideal gas heat capacity at constant volume

Heat capacity or thermal capacity is a physical quantity equal to the ratio of the heat that is added to (or removed from) an object to the resulting ... more

Child's Law - related to anode voltage

First proposed by Clement D. Child in 1911, Child’s law states that the space-charge limited current (SCLC) in a ... more

Pressure inside an ideal soap bubble

The pressure inside an ideal (one surface) soap bubble can be derived from thermodynamic free energy considerations. At constant temperature and in ... more

Center of mass - Barycentric coordinates

In physics, the center of mass of a distribution of mass in space is the unique point where the weighted relative position of the distributed mass sums to ... more

Time-domain reflectometry ( reflection coefficient-resistive load)

Time-domain reflectometry or TDR is a measurement technique used to determine the characteristics of electrical lines by ... more

Intensity - Mathematical description

In physics, intensity is the power transferred per unit area, where the area is measured on the plane perpendicular to the direction of propagation of the ... more

Worksheet 296

(a) Calculate the buoyant force on 10,000 metric tons (1.00×10 7 kg) of solid steel completely submerged in water, and compare this with the steel’s weight.

(b) What is the maximum buoyant force that water could exert on this same steel if it were shaped into a boat that could displace 1.00×10 5 m 3 of water?

Strategy for (a)

To find the buoyant force, we must find the weight of water displaced. We can do this by using the densities of water and steel given in Table [insert table #] We note that, since the steel is completely submerged, its volume and the water’s volume are the same. Once we know the volume of water, we can find its mass and weight

First, we use the definition of density to find the steel’s volume, and then we substitute values for mass and density. This gives :

Density

Because the steel is completely submerged, this is also the volume of water displaced, Vw. We can now find the mass of water displaced from the relationship between its volume and density, both of which are known. This gives:

Density

By Archimedes’ principle, the weight of water displaced is m w g , so the buoyant force is:

Force (Newton's second law)

The steel’s weight is 9.80×10 7 N , which is much greater than the buoyant force, so the steel will remain submerged.

Strategy for (b)

Here we are given the maximum volume of water the steel boat can displace. The buoyant force is the weight of this volume of water.

The mass of water displaced is found from its relationship to density and volume, both of which are known. That is:

Density

The maximum buoyant force is the weight of this much water, or

Force (Newton's second law)

Discussion

The maximum buoyant force is ten times the weight of the steel, meaning the ship can carry a load nine times its own weight without sinking.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

...can't find what you're looking for?

Create a new formula