'

Search results

Found 830 matches
Stokes's Law of Sound Attenuation

Stokes’s law of sound attenuation is a formula for the attenuation of sound in a Newtonian fluid, such as water or air, due to the fluid’s ... more

Reynolds number - Flow in a pipe with mass flow rate

For flow in a pipe or tube, the Reynolds number is generally defined as presented here.

For shapes such as squares, rectangular or annular ducts ... more

Normalized water content ( effective saturation van Genuchten)

In soil mechanics and petroleum engineering, water content or soil moisture content is the quantity of water contained in the soil. The normalized water ... more

Runoff equation ( P >Ia)

Surface runoff is the water flow that occurs when the soil is infiltrated to full capacity and excess water from rain. The runoff is depended on the ... more

Seiche - 'c' factor related to the period of underwater internal waves

A seiche (/ˈseɪʃ/ SAYSH) is a standing wave in an enclosed or partially enclosed body of water. Seiches and seiche-related ... more

dynamic viscosity of water (as a function of temperature temperature)

The viscosity of a fluid is the measure of its resistance to gradual deformation by shear stress or tensile stress. For liquids, it corresponds to the ... more

Force due to water hammer (Slow valve closure)

Water hammer (or, more generally, fluid hammer) is a pressure surge or wave caused when a fluid (usually a liquid but sometimes also a gas) in motion is ... more

Dittus-Boelter equation - Nusselt number

In heat transfer at a boundary (surface) within a fluid, the Nusselt number (Nu) is the ratio of convective to conductive heat transfer across (normal to) ... more

Worksheet 296

(a) Calculate the buoyant force on 10,000 metric tons (1.00×10 7 kg) of solid steel completely submerged in water, and compare this with the steel’s weight.

(b) What is the maximum buoyant force that water could exert on this same steel if it were shaped into a boat that could displace 1.00×10 5 m 3 of water?

Strategy for (a)

To find the buoyant force, we must find the weight of water displaced. We can do this by using the densities of water and steel given in Table [insert table #] We note that, since the steel is completely submerged, its volume and the water’s volume are the same. Once we know the volume of water, we can find its mass and weight

First, we use the definition of density to find the steel’s volume, and then we substitute values for mass and density. This gives :

Density

Because the steel is completely submerged, this is also the volume of water displaced, Vw. We can now find the mass of water displaced from the relationship between its volume and density, both of which are known. This gives:

Density

By Archimedes’ principle, the weight of water displaced is m w g , so the buoyant force is:

Force (Newton's second law)

The steel’s weight is 9.80×10 7 N , which is much greater than the buoyant force, so the steel will remain submerged.

Strategy for (b)

Here we are given the maximum volume of water the steel boat can displace. The buoyant force is the weight of this volume of water.

The mass of water displaced is found from its relationship to density and volume, both of which are known. That is:

Density

The maximum buoyant force is the weight of this much water, or

Force (Newton's second law)

Discussion

The maximum buoyant force is ten times the weight of the steel, meaning the ship can carry a load nine times its own weight without sinking.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Flow coefficient

The flow coefficient of a device is a relative measure of its efficiency at allowing fluid flow. It describes the relationship between the pressure drop ... more

...can't find what you're looking for?

Create a new formula