'

Search results

Found 1446 matches
Specific absorption rate (SAR)

Specific absorption rate calculates the rate at which energy is absorbed by the body when exposed to a radio frequency (RF) electromagnetic field. Specific ... more

Low-density lipoprotein - Estimation of LDL particles via cholesterol content - in mmol/l

Low-density lipoprotein (LDL) is one of the five major groups of lipoproteins. These groups, from least dense to most dense, are: ... more

Low-density lipoprotein - Estimation of LDL particles via cholesterol content - in mg/dl

Low-density lipoprotein (LDL) is one of the five major groups of lipoproteins. These groups, from least dense to most dense, are: ... more

Wavenumber (with radians)

In the physical sciences, the wavenumber (also wave number) is the spatial frequency of a wave, either in cycles per unit distance or radians per unit ... more

Energy Density of electric and magnetic fields

Energy density is the amount of energy stored in a given system or region of space per unit volume or mass, though the latter is more accurately termed ... more

Convective heat transfer coefficient with Nusselt number for Internal/turbulent flow

Although convective heat transfer can be derived analytically through dimensional analysis, exact analysis of the boundary layer, approximate integral ... more

Angular resolution

Angular resolution or spatial resolution describes the ability of any image-forming device such as an optical or radio telescope, a microscope, a camera, ... more

Dolbear's Law - in degrees Celsius

Dolbear’s law states the relationship between the air temperature and the rate at which crickets chirp. It was formulated by Amos ... more

Dolbear's Law - in degrees Fahrenheit

Dolbear’s law states the relationship between the air temperature and the rate at which crickets chirp. It was formulated by Amos ... more

Worksheet 296

(a) Calculate the buoyant force on 10,000 metric tons (1.00×10 7 kg) of solid steel completely submerged in water, and compare this with the steel’s weight.

(b) What is the maximum buoyant force that water could exert on this same steel if it were shaped into a boat that could displace 1.00×10 5 m 3 of water?

Strategy for (a)

To find the buoyant force, we must find the weight of water displaced. We can do this by using the densities of water and steel given in Table [insert table #] We note that, since the steel is completely submerged, its volume and the water’s volume are the same. Once we know the volume of water, we can find its mass and weight

First, we use the definition of density to find the steel’s volume, and then we substitute values for mass and density. This gives :

Density

Because the steel is completely submerged, this is also the volume of water displaced, Vw. We can now find the mass of water displaced from the relationship between its volume and density, both of which are known. This gives:

Density

By Archimedes’ principle, the weight of water displaced is m w g , so the buoyant force is:

Force (Newton's second law)

The steel’s weight is 9.80×10 7 N , which is much greater than the buoyant force, so the steel will remain submerged.

Strategy for (b)

Here we are given the maximum volume of water the steel boat can displace. The buoyant force is the weight of this volume of water.

The mass of water displaced is found from its relationship to density and volume, both of which are known. That is:

Density

The maximum buoyant force is the weight of this much water, or

Force (Newton's second law)

Discussion

The maximum buoyant force is ten times the weight of the steel, meaning the ship can carry a load nine times its own weight without sinking.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

...can't find what you're looking for?

Create a new formula