'

Search results

Found 1865 matches
Distance of L3 Langarian point

In celestial mechanics, the Lagrangian points (also Lagrange points, L-points, or libration points) are positions in an orbital configuration of two large ... more

Future value of a present sum

A time value of money calculation is one which solves for one of several variables in a financial problem. In a typical case, the variables might be: a ... more

Exponential decay

A quantity is said to be subject to exponential decay if it decreases at a rate proportional to its value. If the decaying quantity, N(t), is the number of ... more

Time delay for a signal from Earth to a Satelite in geostationary orbit and back

A geostationary orbit, geostationary Earth orbit or geosynchronous equatorial orbit (GEO), is an orbit whose position in the sky ... more

Guided ray (acceptance angle)

A guided ray (also bound ray or trapped ray) is a ray of light in a multi-mode optical fiber ( type of optical fiber mostly used for communication over ... more

Angular resolution (by a telescope array)

The highest angular resolutions can be achieved by arrays of telescopes called astronomical interferometers: These instruments can achieve angular ... more

Piston stroke (displacement )

Almost all reciprocating engines use cranks (with connecting rods) to transform the back-and-forth motion of the pistons into rotary motion. The cranks are ... more

Concentration of a substance (first order reaction)

The concentration of a substance at time “t”, of a first-order reaction, depends only on the initial concentration and the properties of the ... more

Orbital Eccentricity

The orbital eccentricity of an astronomical object is a parameter that determines the amount by which its orbit around another body deviates from a perfect ... more

Worksheet 296

(a) Calculate the buoyant force on 10,000 metric tons (1.00×10 7 kg) of solid steel completely submerged in water, and compare this with the steel’s weight.

(b) What is the maximum buoyant force that water could exert on this same steel if it were shaped into a boat that could displace 1.00×10 5 m 3 of water?

Strategy for (a)

To find the buoyant force, we must find the weight of water displaced. We can do this by using the densities of water and steel given in Table [insert table #] We note that, since the steel is completely submerged, its volume and the water’s volume are the same. Once we know the volume of water, we can find its mass and weight

First, we use the definition of density to find the steel’s volume, and then we substitute values for mass and density. This gives :

Density

Because the steel is completely submerged, this is also the volume of water displaced, Vw. We can now find the mass of water displaced from the relationship between its volume and density, both of which are known. This gives:

Density

By Archimedes’ principle, the weight of water displaced is m w g , so the buoyant force is:

Force (Newton's second law)

The steel’s weight is 9.80×10 7 N , which is much greater than the buoyant force, so the steel will remain submerged.

Strategy for (b)

Here we are given the maximum volume of water the steel boat can displace. The buoyant force is the weight of this volume of water.

The mass of water displaced is found from its relationship to density and volume, both of which are known. That is:

Density

The maximum buoyant force is the weight of this much water, or

Force (Newton's second law)

Discussion

The maximum buoyant force is ten times the weight of the steel, meaning the ship can carry a load nine times its own weight without sinking.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

...can't find what you're looking for?

Create a new formula