'

Search results

Found 1352 matches
Drift velocity in a current-carrying metallic conductor

The drift velocity is the average velocity that a particle, such as an electron, attains due to an electric field. In general, an electron will 'rattle ... more

Hydraulic gradient

Hydraulic head or piezometric head is a specific measurement of liquid pressure above a geodetic datum. The hydraulic gradient is a vector gradient between ... more

Worksheet 300

Calculate the Reynolds number N′R for a ball with a 7.40-cm diameter thrown at 40.0 m/s.

Strategy

We can use the Reynolds number equation calculate N’R , since all values in it are either given or can be found in tables of density and viscosity.

Solution

We first find the kinematic viscosity values:

Kinematic Viscosity

Substituting values into the equation for N’R yields:

Reynolds number

Discussion

This value is sufficiently high to imply a turbulent wake. Most large objects, such as airplanes and sailboats, create significant turbulence as they move. As noted before, the Bernoulli principle gives only qualitatively-correct results in such situations.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Richter magnitude scale

assigns a magnitude number to quantify the energy released by an earthquake. The Richter scale is a base-10 logarithmic scale, which defines magnitude as ... more

Absolute thermal resistance (across the length of the material)

Thermal resistance is a heat property and a measurement of a temperature difference by which an object or material resists a heat flow. Absolute thermal ... more

Diffusion coefficient for dilute gases

Diffusivity or diffusion coefficient is a proportionality constant between the molar flux due to molecular diffusion and the gradient in the concentration ... more

Worksheet 324

The main span of San Francisco’s Golden Gate Bridge is 1275 m long at its coldest. The bridge is exposed to temperatures ranging from –15ºC to 40ºC . (a) What is its change in length between these temperatures? Assume that the bridge is made entirely of steel.

Strategy

Use the equation for linear thermal expansion to calculate the change in length , ΔL . Use the coefficient of linear expansion, α ,for steel from Table 13.2, and note that the change in temperature, ΔT , is 55ºC

Thermal Expansion - Linear

(b) convert the change in temperature if Kelvin and Fahrenheit degrees. **
**this section is not included in the Reference material

Celsius <-> Kelvin
Celsius <-> Fahrenheit

Discussion

Although not large compared with the length of the bridge, this change in length is observable. It is generally spread over many expansion joints so that the expansion at each joint is small.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Aris Law of Video Gaming Value for Money

Video Gaming Value for Money(VfM) according to Aris.

... more

Foivos Law of Video Gaming - f(Gt)

Video Gaming Value for Money(VfM) according to Foivos.

... more

Prandtl number

The Prandtl number (Pr) or Prandtl group is a dimensionless number, named after the German physicist Ludwig Prandtl, defined as the ratio of momentum ... more

...can't find what you're looking for?

Create a new formula