'

Search results

Found 1532 matches
Arrhenius number

In chemical kinetics, the pre-exponential factor or A factor is the pre-exponential constant in the Arrhenius equation. Here named as Arrhenius number.

... more

Turnbuckle (The direct shear stress induced in screw thread)

A mechanical joint is a part of a machine which is used to connect another mechanical part or mechanism. Mechanical joints may be temporary or permanent. ... more

Worksheet 296

(a) Calculate the buoyant force on 10,000 metric tons (1.00×10 7 kg) of solid steel completely submerged in water, and compare this with the steel’s weight.

(b) What is the maximum buoyant force that water could exert on this same steel if it were shaped into a boat that could displace 1.00×10 5 m 3 of water?

Strategy for (a)

To find the buoyant force, we must find the weight of water displaced. We can do this by using the densities of water and steel given in Table [insert table #] We note that, since the steel is completely submerged, its volume and the water’s volume are the same. Once we know the volume of water, we can find its mass and weight

First, we use the definition of density to find the steel’s volume, and then we substitute values for mass and density. This gives :

Density

Because the steel is completely submerged, this is also the volume of water displaced, Vw. We can now find the mass of water displaced from the relationship between its volume and density, both of which are known. This gives:

Density

By Archimedes’ principle, the weight of water displaced is m w g , so the buoyant force is:

Force (Newton's second law)

The steel’s weight is 9.80×10 7 N , which is much greater than the buoyant force, so the steel will remain submerged.

Strategy for (b)

Here we are given the maximum volume of water the steel boat can displace. The buoyant force is the weight of this volume of water.

The mass of water displaced is found from its relationship to density and volume, both of which are known. That is:

Density

The maximum buoyant force is the weight of this much water, or

Force (Newton's second law)

Discussion

The maximum buoyant force is ten times the weight of the steel, meaning the ship can carry a load nine times its own weight without sinking.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Vis-Viva Equation with standard gravitational parameter

In astrodynamics, the vis viva equation, also referred to as orbital energy conservation equation, is one of the fundamental equations that govern the ... more

Alfvén velocity

In plasma physics, an Alfvén wave, named after Hannes Alfvén, is a type of magnetohydrodynamic wave in which ions oscillate in response to a restoring ... more

Escape Velocity

Escape velocity is the speed at which the kinetic energy plus the gravitational potential energy of an object is zero. It is the speed needed to ... more

Fracture of ductile materials (Dissipated energy)

In ductile materials, a plastic zone develops at the tip of the crack. The plastic loading and unloading cycle near the crack tip leads to the dissipation ... more

Drift Velocity

The drift velocity is the average velocity that a particle, such as an electron, attains in a material due to an electric field. It can also be referred to ... more

Energy stored in a capacitor

Capacitance is the ability of a body to store an electrical charge. Any object that can be electrically charged exhibits capacitance. A common form of ... more

Maxwell–Boltzmann statistics

In statistical mechanics, Maxwell–Boltzmann statistics describes the average distribution of non-interacting material particles over various energy states ... more

...can't find what you're looking for?

Create a new formula