'

Search results

Found 983 matches
Gyromagnetic ratio for a nucleus

In physics, the gyromagnetic ratio (also sometimes known as the magnetogyric ratio in other disciplines) of a particle or system is the ratio of its ... more

Worksheet 296

(a) Calculate the buoyant force on 10,000 metric tons (1.00×10 7 kg) of solid steel completely submerged in water, and compare this with the steel’s weight.

(b) What is the maximum buoyant force that water could exert on this same steel if it were shaped into a boat that could displace 1.00×10 5 m 3 of water?

Strategy for (a)

To find the buoyant force, we must find the weight of water displaced. We can do this by using the densities of water and steel given in Table [insert table #] We note that, since the steel is completely submerged, its volume and the water’s volume are the same. Once we know the volume of water, we can find its mass and weight

First, we use the definition of density to find the steel’s volume, and then we substitute values for mass and density. This gives :

Density

Because the steel is completely submerged, this is also the volume of water displaced, Vw. We can now find the mass of water displaced from the relationship between its volume and density, both of which are known. This gives:

Density

By Archimedes’ principle, the weight of water displaced is m w g , so the buoyant force is:

Force (Newton's second law)

The steel’s weight is 9.80×10 7 N , which is much greater than the buoyant force, so the steel will remain submerged.

Strategy for (b)

Here we are given the maximum volume of water the steel boat can displace. The buoyant force is the weight of this volume of water.

The mass of water displaced is found from its relationship to density and volume, both of which are known. That is:

Density

The maximum buoyant force is the weight of this much water, or

Force (Newton's second law)

Discussion

The maximum buoyant force is ten times the weight of the steel, meaning the ship can carry a load nine times its own weight without sinking.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Radiation Pressure by Reflection (using particle model: photons)

Radiation pressure is the pressure exerted upon any surface exposed to electromagnetic radiation. Radiation pressure implies an interaction between ... more

Precession (Torque-free)

Precession is a change in the orientation of the rotational axis of a rotating body. In an appropriate reference frame it can be defined as a change in the ... more

Distance of L3 Langarian point

In celestial mechanics, the Lagrangian points (also Lagrange points, L-points, or libration points) are positions in an orbital configuration of two large ... more

Distance of L1 and L2 Langarian points(M2<<M1)

In celestial mechanics, the Lagrangian points (also Lagrange points, L-points, or libration points) are positions in an orbital configuration of two large ... more

Critical Speed of a Rotating Shaft - Rayleigh–Ritz method

In solid mechanics, in the field of rotordynamics, the critical speed is the theoretical angular velocity that excites the natural frequency of a rotating ... more

Ricco's Law

Several laws describe a human’s ability to visually detect targets on a uniform background. One such law is Riccò's law, discovered by astronomer ... more

Rayleigh Scattering - Intensity of Light from molecules

Rayleigh scattering (pronounced /ˈreɪli/ RAY-lee), named after the British physicist Lord Rayleigh (John William Strutt), is the (dominantly) elastic ... more

Rayleigh Scattering - Intensity of Light

Rayleigh scattering (pronounced /ˈreɪli/ RAY-lee), named after the British physicist Lord Rayleigh (John William Strutt), is the (dominantly) elastic ... more

...can't find what you're looking for?

Create a new formula