'

Search results

Found 1075 matches
Floating objects (weight that depresses the surface)

When an object is placed on a liquid, its weight depresses the surface, and is balanced by the surface tension forces on either side , which are each ... more

Buoyancy mass (effective mass)

The effective mass of an object which is submerged and suspended via a cord, is the mass of a reference object on the a dry-land pan of the balance that ... more

Terminal velocity (creeping flow conditions)

The terminal velocity of a falling object is the velocity of the object when the sum of the drag force and buoyancy equals the downward force of gravity ... more

Terminal velocity (under buoyancy force)

The terminal velocity of a falling object is the velocity of the object when the sum of the drag force and buoyancy equals the downward force of gravity ... more

Surface Tension - surface area growth : energy

Surface tension is a contractive tendency of the surface of a liquid that allows it to resist an external force. Surface tension is an important property ... more

Worksheet 296

(a) Calculate the buoyant force on 10,000 metric tons (1.00×10 7 kg) of solid steel completely submerged in water, and compare this with the steel’s weight.

(b) What is the maximum buoyant force that water could exert on this same steel if it were shaped into a boat that could displace 1.00×10 5 m 3 of water?

Strategy for (a)

To find the buoyant force, we must find the weight of water displaced. We can do this by using the densities of water and steel given in Table [insert table #] We note that, since the steel is completely submerged, its volume and the water’s volume are the same. Once we know the volume of water, we can find its mass and weight

First, we use the definition of density to find the steel’s volume, and then we substitute values for mass and density. This gives :

Density

Because the steel is completely submerged, this is also the volume of water displaced, Vw. We can now find the mass of water displaced from the relationship between its volume and density, both of which are known. This gives:

Density

By Archimedes’ principle, the weight of water displaced is m w g , so the buoyant force is:

Force (Newton's second law)

The steel’s weight is 9.80×10 7 N , which is much greater than the buoyant force, so the steel will remain submerged.

Strategy for (b)

Here we are given the maximum volume of water the steel boat can displace. The buoyant force is the weight of this volume of water.

The mass of water displaced is found from its relationship to density and volume, both of which are known. That is:

Density

The maximum buoyant force is the weight of this much water, or

Force (Newton's second law)

Discussion

The maximum buoyant force is ten times the weight of the steel, meaning the ship can carry a load nine times its own weight without sinking.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Surface Tension - surface area growth : force

Surface tension is a contractive tendency of the surface of a liquid that allows it to resist an external force. Surface tension is an important property ... more

Submerged unit weight

In fluid mechanics, specific weight ( or unit weight ) represents the force exerted by gravity on a unit volume of a fluid. Specific weight can be used as ... more

Normal force for a sinking object settles on the solid floor

When a sinking in a fluid object settles on the solid floor, it experiences a normal force.

... more

Froude number - ship hydrodynamics

The Froude number (Fr) is a dimensionless number defined as the ratio of a characteristic velocity to a gravitational wave velocity. It may equivalently be ... more

Gravity gradiant

Gravity gradiometry is the study and measurement of variations in the acceleration due to gravity. The gravity gradient is the spatial rate of change of ... more

Maximum Spring Force (Fully Compressed)

A spring is an elastic object used to store mechanical energy. Springs are usually made out of spring steel. Small springs can be wound from pre-hardened ... more

Drag equation ( for fluids)

Drag (sometimes called air resistance, a type of friction, or fluid resistance, another type of friction or fluid friction) refers to forces acting ... more

Heat-affected zone - heat input for arc welding

The cross-section of a welded butt joint, with the darkest gray representing the weld or fusion zone, the medium gray the heat affected zone, and the ... more

Compound pendulum ( ordinary frequency )

A compound pendulum is a body formed from an assembly of particles or continuous shapes that rotates rigidly around a pivot. Its moments of inertia is the ... more

Compound pendulum (momemt of inertia)

A compound pendulum is a body formed from an assembly of particles or continuous shapes that rotates rigidly around a pivot. Its moments of inertia is the ... more

Worksheet 290

Find the terminal velocity of an 85-kg skydiver falling in a spread-eagle position.

Terminal Velocity (without considering buoyancy)
Rectangle area

where Vt is the terminal velocity, m is the mass of the skydiver, g is the acceleration due to gravity, Cd is the drag coefficient, ρ is the density of the fluid through which the object is falling, and A is the projected area of the object.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

where h is skydiver height and w the width at “spread-eagle” position

Critical Hall parameter (fully ionized gas)

The electrothermal instability (also known as the ionization instability) is a magnetohydrodynamic (MHD) instability appearing in ... more

Vertical Pressure variation of the Atmosphere of Earth( exponential function of height)

Vertical pressure variation is the variation in pressure as a function of elevation. The vertical variation is especially significant, as it results from ... more

Fluid Thread Breakup - Linear Stability of Inviscid Liquids

Fluid thread breakup is the process by which a single mass of fluid breaks into several smaller fluid masses. The process is characterized by the ... more

Drag coefficient for a spherical object in creeping flow

In fluid dynamics, the drag coefficient is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, ... more

Terminal Velocity (without considering buoyancy)

Terminal velocity is simply the fastest speed that a falling object can reach in a certain circumstance. Different objects have different terminal ... more

Velocity of a falling object

In fluid dynamics, drag (sometimes called air resistance, a type of friction, or fluid resistance, another type of friction or fluid friction) is a force ... more

Stokes' law (Excess force due to the difference of the weight of the sphere and the buoyancy on the sphere)

The weight of an object is the force on the object due to gravity. Buoyancy is an upward force exerted by a fluid that opposes the weight of an immersed ... more

Buoyant force (Archimedes' principle)

Buoyancy is an upward force exerted by a fluid that opposes the weight of an immersed object. Buoyant force equivalent to the weight of the fluid that ... more

Worksheet 316

Calculate the change in length of the upper leg bone (the femur) when a 70.0 kg man supports 62.0 kg of his mass on it, assuming the bone to be equivalent to a uniform rod that is 45.0 cm long and 2.00 cm in radius.

Strategy

The force is equal to the weight supported:

Force (Newton's second law)

and the cross-sectional area of the upper leg bone(femur) is:

Disk area

To find the change in length we use the Young’s modulus formula. The Young’s modulus reference value for a bone under compression is known to be 9×109 N/m2. Now,all quantities except ΔL are known. Thus:

Young's Modulus

Discussion

This small change in length seems reasonable, consistent with our experience that bones are rigid. In fact, even the rather large forces encountered during strenuous physical activity do not compress or bend bones by large amounts. Although bone is rigid compared with fat or muscle, several of the substances listed in Table 5.3(see reference below) have larger values of Young’s modulus Y . In other words, they are more rigid.

Reference:
This worksheet is a modified version of Example 5.4 page 188 found in :
OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Weight

In science and engineering, the weight of an object is usually taken to be the force on the object due to gravity.
In Newtonian physics the weight is ... more

Moment of inertia factor

In planetary sciences, the moment of inertia factor or normalized polar moment of inertia is a dimensionless quantity that characterizes the radial ... more

Gravity Acceleration by Altitude

The gravity of Earth, which is denoted by g, refers to the acceleration that the Earth imparts to objects on or near its surface due to gravity. In SI ... more

Weber Number

The Weber number (We) is a dimensionless number in fluid mechanics that is often useful in analysing fluid flows where there is an interface between two ... more

...can't find what you're looking for?

Create a new formula