'

Search results

Found 783 matches
Combined gas law

The combined gas law is a gas law which combines Charles’s law, Boyle’s law, and Gay-Lussac’s law. The combined gas law states that:
... more

Roll-Off - First Order

Roll-off is the steepness of a transmission function with frequency, particularly in electrical network analysis, and most especially in connection with ... more

Horizontal curve - Sight obstraction distance (S>L)

Horizontal Curves are one of the two important transition elements in geometric design for highways (along with Vertical Curves). A horizontal curve ... more

Buckling Coefficient

In science, buckling is a mathematical instability that leads to a failure mode.

When a structure is subjected to compressive stress, buckling may ... more

Wavelength - Sinusoidal Wave

In physics, the wavelength of a sinusoidal wave is the spatial period of the wave—the distance over which the wave’s shape repeats, and the inverse ... more

Heat flow in electronics - maximum power dissipate

The heat flow can be modelled by analogy to an electrical circuit where heat flow is represented by current, temperatures are represented by voltages, heat ... more

Newton's Law of Cooling - Heat transfer version

Convection-cooling is sometimes called “Newton’s law of cooling” in cases where the heat transfer coefficient is independent or ... more

Worksheet 306

Calculate the force the biceps muscle must exert to hold the forearm and its load as shown in the figure below, and compare this force with the weight of the forearm plus its load. You may take the data in the figure to be accurate to three significant figures.


(a) The figure shows the forearm of a person holding a book. The biceps exert a force FB to support the weight of the forearm and the book. The triceps are assumed to be relaxed. (b) Here, you can view an approximately equivalent mechanical system with the pivot at the elbow joint

Strategy

There are four forces acting on the forearm and its load (the system of interest). The magnitude of the force of the biceps is FB, that of the elbow joint is FE, that of the weights of the forearm is wa , and its load is wb. Two of these are unknown FB, so that the first condition for equilibrium cannot by itself yield FB . But if we use the second condition and choose the pivot to be at the elbow, then the torque due to FE is zero, and the only unknown becomes FB .

Solution

The torques created by the weights are clockwise relative to the pivot, while the torque created by the biceps is counterclockwise; thus, the second condition for equilibrium (net Ï„ = 0) becomes

Force (Newton's second law)
Torque
Force (Newton's second law)
Torque

Note that sin θ = 1 for all forces, since θ = 90º for all forces. This equation can easily be solved for FB in terms of known quantities,yielding. Entering the known values gives

Mechanical equilibrium - 3=3 Torque example

which yields

Torque
Addition

Now, the combined weight of the arm and its load is known, so that the ratio of the force exerted by the biceps to the total weight is

Division

Discussion

This means that the biceps muscle is exerting a force 7.38 times the weight supported.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Vertical Hyperbola (Standard Equation)

Hyperbola is the set of all points in the plane, such that the absolute value of the difference of each of the distances from two fixed points is constant. ... more

Horizontal Hyperbola (Standard Equation)

Hyperbola is the set of all points in the plane, such that the absolute value of the difference of each of the distances from two fixed points is constant. ... more

...can't find what you're looking for?

Create a new formula