'

Search results

Found 893 matches
Nq bearing capacity factor

Karl von Terzaghi was the first to present a comprehensive theory for the evaluation of the ultimate bearing capacity of rough shallow foundations. This ... more

Lift-to-Drag Ratio

In aerodynamics, the lift-to-drag ratio, or L/D ratio, is the amount of lift generated by a wing or vehicle, divided by the drag it creates by moving ... more

Runoff equation ( P >Ia)

Surface runoff is the water flow that occurs when the soil is infiltrated to full capacity and excess water from rain. The runoff is depended on the ... more

Runoff curve number

Surface runoff is the water flow that occurs when the soil is infiltrated to full capacity and excess water from rain. The runoff curve number (also called ... more

Thermal resistance due to fouling deposits

Often during their use, heat exchangers collect a layer of fouling on the surface which, in addition to potentially contaminating a stream, reduces the ... more

Nγ bearing capacity factor (Terzaghi's theory)

Karl von Terzaghi was the first to present a comprehensive theory for the evaluation of the ultimate bearing capacity of rough shallow foundations. This ... more

Influence of the wind on a building

A building is a man-made structure with a roof and walls standing more or less permanently in one place. In general when the wind blows on a building then ... more

Nc bearing capacity factor

Karl von Terzaghi was the first to present a comprehensive theory for the evaluation of the ultimate bearing capacity of rough shallow foundations. This ... more

Worksheet 334

In a video game design, a map shows the location of other characters relative to the player, who is situated at the origin, and the direction they are facing. A character currently shows on the map at coordinates (-3, 5). If the player rotates counterclockwise by 20 degrees, then the objects in the map will correspondingly rotate 20 degrees clockwise. Find the new coordinates of the character.

To rotate the position of the character, we can imagine it as a point on a circle, and we will change the angle of the point by 20 degrees. To do so, we first need to find the radius of this circle and the original angle.

Drawing a right triangle inside the circle, we can find the radius using the Pythagorean Theorem:

Pythagorean theorem (right triangle)

To find the angle, we need to decide first if we are going to find the acute angle of the triangle, the reference angle, or if we are going to find the angle measured in standard position. While either approach will work, in this case we will do the latter. By applying the cosine function and using our given information we get

Cosine function
Subtraction

While there are two angles that have this cosine value, the angle of 120.964 degrees is in the second quadrant as desired, so it is the angle we were looking for.

Rotating the point clockwise by 20 degrees, the angle of the point will decrease to 100.964 degrees. We can then evaluate the coordinates of the rotated point

For x axis:

Cosine function

For y axis:

Sine function

The coordinates of the character on the rotated map will be (-1.109, 5.725)

Reference : PreCalculus: An Investigation of Functions,Edition 1.4 © 2014 David Lippman and Melonie Rasmussen
http://www.opentextbookstore.com/precalc/
Creative Commons License : http://creativecommons.org/licenses/by-sa/3.0/us/

Kepler's Third Law - with Radial Acceleration

In astronomy, Kepler’s laws of planetary motion are three scientific laws describing the motion of planets around the Sun.

1.The orbit of a ... more

...can't find what you're looking for?

Create a new formula