'

Search results

Found 1921 matches
Rydberg formula - For hydrogen-like element

The Rydberg formula is used in atomic physics to describe the wavelengths of spectral lines of many chemical elements. It was formulated by the Swedish ... more

Wavelength - Sinusoidal Wave

In physics, the wavelength of a sinusoidal wave is the spatial period of the wave—the distance over which the wave’s shape repeats, and the inverse ... more

Doppler effect ( relationship between observed frequency and emitted frequency )

The Doppler effect (or Doppler shift) is the change in frequency of a wave (or other periodic event) for an observer moving relative to its source. When ... more

Photon Momentum

A photon is an elementary particle, the quantum of light and all other forms of electromagnetic radiation. It is the force carrier for the electromagnetic ... more

Angle required to hit polar coordinate (x,y) - (projectile following a ballistic trajectory)

In physics, the ballistic trajectory of a projectile is the path that a thrown or launched projectile or missile without propulsion will take under the ... more

Specific absorption rate - with Increase of temperature

Specific absorption rate (SAR) is a measure of the rate at which energy is absorbed by the human body when exposed to a radio ... more

Free-Space Path Loss (in dB)

In telecommunication, free-space path loss (FSPL) is the loss in signal strength of an electromagnetic wave that would result ... more

Rydberg formula - For hydrogen

The Rydberg formula is used in atomic physics to describe the wavelengths of spectral lines of many chemical elements. It was formulated by the Swedish ... more

Auger electron spectroscopy - Energetics of Auger transitions (more rigorous model)

Auger electron spectroscopy is a common analytical technique used specifically in the study of surfaces and, more generally, in the area of materials ... more

Worksheet 324

The main span of San Francisco’s Golden Gate Bridge is 1275 m long at its coldest. The bridge is exposed to temperatures ranging from –15ºC to 40ºC . (a) What is its change in length between these temperatures? Assume that the bridge is made entirely of steel.

Strategy

Use the equation for linear thermal expansion to calculate the change in length , ΔL . Use the coefficient of linear expansion, α ,for steel from Table 13.2, and note that the change in temperature, ΔT , is 55ºC

Thermal Expansion - Linear

(b) convert the change in temperature if Kelvin and Fahrenheit degrees. **
**this section is not included in the Reference material

Celsius <-> Kelvin
Celsius <-> Fahrenheit

Discussion

Although not large compared with the length of the bridge, this change in length is observable. It is generally spread over many expansion joints so that the expansion at each joint is small.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

...can't find what you're looking for?

Create a new formula