'

Search results

Found 1447 matches
Area of rhombus (by diagonals)

Rhombus is a simple (non-self-intersecting) quadrilateral whose four sides all have the same length. Every rhombus is a parallelogram, and a rhombus with ... more

Newton's law of universal gravitation

Every point mass in the universe attracts every other point mass with a force that is directly proportional to the product of their masses and inversely ... more

Fresnel reflection (Reflectivity Rs)

The Fresnel equations (or Fresnel conditions) describe the behaviour of light when moving between media of differing refractive indices. The reflection of ... more

Fresnel reflection (Reflectivity Rp)

The Fresnel equations (or Fresnel conditions) describe the behaviour of light when moving between media of differing refractive indices. The reflection of ... more

Freefall in Uniform Gravitational Field with Air Resistance (altitude)

In Newtonian physics, free fall is any motion of a body where gravity is the only force acting upon it. In a Freefall in Uniform Gravitational Field with ... more

Critical grain size (diameter)

Sediment transport is the movement of solid particles (sediment), typically due to a combination of gravity acting on the sediment, and/or the movement of ... more

Lambert cylindrical equal-area projection(Y-coordinate)

In cartography, the Lambert cylindrical equal-area projection, or Lambert cylindrical projection, is a cylindrical, equal area map projection. It is a ... more

Variance

The variance is a parameter that describes, in part, either the actual probability distribution of an observed population of numbers, or the theoretical ... more

Magic hypercube

In mathematics, a magic hypercube is the k-dimensional generalization of magic squares, magic cubes and magic tesseracts; that is, a number of integers ... more

Worksheet 308

Astrology, that unlikely and vague pseudoscience, makes much of the position of the planets at the moment of one’s birth. The only known force a planet exerts on Earth is gravitational.

(a) Calculate the gravitational force exerted on a 4.20 kg baby by a 100 kg father 0.200 m away at birth (he is assisting, so he is close to the child).

(b) Calculate the force on the baby due to Jupiter if it is at its closest distance to Earth, some 6.29e+11 m away. How does the force of Jupiter on the baby compare to the force of the father on the baby?

Father’s gravitational force on the baby is:

Newton's law of universal gravitation

Jupiter’s gravitational force on the baby is:

Newton's law of universal gravitation
Division

(c) What should be the father’s weight, so that he exerts the same force on the baby as that of Jupiter? **
**this section is not included in the Reference material

Newton's law of universal gravitation

Discussion

Other objects in the room and the hospital building also exert similar gravitational forces. (Of course, there could be an unknown force acting, but scientists first need to be convinced that there is even an effect, much less that an unknown force causes it.)

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Dedicated to little Konstantinos

...can't find what you're looking for?

Create a new formula