'

Search results

Found 1515 matches
Antenna Gain

In electromagnetics, an antenna’s power gain or simply gain is a key performance figure which combines the antenna’s directivity and electrical ... more

Thrust-to-Weight Ratio - Propeller-driven aircraft

Thrust-to-weight ratio (TWR) is a dimensionless ratio of thrust to weight of a rocket, jet engine, propeller engine, or a vehicle ... more

Compression ratio

The compression ratio of an internal-combustion engine or external combustion engine is a value that represents the ratio of the volume of its combustion ... more

West number

The West number is an empirical parameter used to characterize the performance of Stirling engines and other Stirling systems. A Stirling engine is a heat ... more

Maximum axial load that a long, slender, ideal column can carry without buckling

Column or pillar in architecture and structural engineering is a structural element that transmits, through compression, the weight of the structure above ... more

The power to thrust ratio - rocket propulsion

Spacecraft propulsion is any method used to accelerate spacecraft and artificial satellites. Space propulsion or in-space propulsion exclusively deals with ... more

Electrical conductance (related to the material and the shape of the conductor)

In physics and electrical engineering, a conductor is an object or type of material that permits the flow of electrical current in one or more directions. ... more

Worksheet 341

The awe‐inspiring Great Pyramid of Cheops was built more than 4500 years ago. Its square base, originally 230 m on a side, covered 13.1 acres, and it was 146 m high (H), with a mass of about 7×10^9 kg. (The pyramid’s dimensions are slightly different today due to quarrying and some sagging). Historians estimate that 20,000 workers spent 20 years to construct it, working 12-hour days, 330 days per year.

a) Calculate the gravitational potential energy stored in the pyramid, given its center of mass is at one-fourth its height.

Division
Potential energy

b) Only a fraction of the workers lifted blocks; most were involved in support services such as building ramps, bringing food and water, and hauling blocks to the site. Calculate the efficiency of the workers who did the lifting, assuming there were 1000 of them and they consumed food energy at the rate of 300 Kcal/hour.

first we calculate the number of hours worked per year.

Multiplication

then we calculate the number of hours worked in the 20 years.

Multiplication

Then we calculate the energy consumed in 20 years knowing the energy consumed per hour and the total hours worked in 20 years.

Multiplication
Multiplication

The efficiency is the resulting potential energy divided by the consumed energy.

Division
Load and Resistance Factor Design (LRFD) - Load combinations (eq3a)

In structural engineering, a structure is a body or combination of pieces of rigid bodies in space to form a fitness system for supporting loads. ... more

Load and Resistance Factor Design (LRFD) - Load combinations (eq6a)

In structural engineering, a structure is a body or combination of pieces of rigid bodies in space to form a fitness system for supporting loads. ... more

...can't find what you're looking for?

Create a new formula