'

Search results

Found 1351 matches
Thermal energy of an ideal gas

Thermal energy is a term sometimes used to refer to the internal energy present in a system in a state of thermodynamic equilibrium by virtue of its ... more

Drift velocity in a current-carrying metallic conductor

The drift velocity is the average velocity that a particle, such as an electron, attains due to an electric field. In general, an electron will 'rattle ... more

Shear Modulus

In materials science, shear modulus or modulus of rigidity, denoted by G, or sometimes S or μ, is defined as the ratio of shear stress to the shear strain. ... more

Moment of inertia of a solid cuboid ( Axis of rotation at the width)

Moment of inertia is the mass property of a rigid body that defines the torque needed for a desired angular acceleration about an axis of rotation. Moment ... more

Moment of inertia of a solid cuboid ( Axis of rotation at the depth)

Moment of inertia is the mass property of a rigid body that defines the torque needed for a desired angular acceleration about an axis of rotation. Moment ... more

Lensmaker's equation

A lens is a transmissive optical device which affects the focusing of a light beam through refraction. A simple lens consists of a single piece of ... more

Osmotic pressure

is the minimum pressure which needs to be applied to a solution to prevent the inward flow of water across a semipermeable membrane. It is also defined as ... more

Worksheet 308

Astrology, that unlikely and vague pseudoscience, makes much of the position of the planets at the moment of one’s birth. The only known force a planet exerts on Earth is gravitational.

(a) Calculate the gravitational force exerted on a 4.20 kg baby by a 100 kg father 0.200 m away at birth (he is assisting, so he is close to the child).

(b) Calculate the force on the baby due to Jupiter if it is at its closest distance to Earth, some 6.29e+11 m away. How does the force of Jupiter on the baby compare to the force of the father on the baby?

Father’s gravitational force on the baby is:

Newton's law of universal gravitation

Jupiter’s gravitational force on the baby is:

Newton's law of universal gravitation
Division

(c) What should be the father’s weight, so that he exerts the same force on the baby as that of Jupiter? **
**this section is not included in the Reference material

Newton's law of universal gravitation

Discussion

Other objects in the room and the hospital building also exert similar gravitational forces. (Of course, there could be an unknown force acting, but scientists first need to be convinced that there is even an effect, much less that an unknown force causes it.)

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Dedicated to little Konstantinos

Graveyard Orbit - Minimum Perigee Altitude

A graveyard orbit, also called a junk orbit or disposal orbit, is a supersynchronous orbit that lies significantly above synchronous orbit, where ... more

Moment of inertia of a solid cuboid ( Axis of rotation at the longest diagonal )

oment of inertia is the mass property of a rigid body that defines the torque needed for a desired angular acceleration about an axis of rotation. Moment ... more

...can't find what you're looking for?

Create a new formula