'

Search results

Found 1627 matches
Standard Gravitational Parameter - Two bodies orbiting each other

In celestial mechanics, the standard gravitational parameter μ of a celestial body is the product of the gravitational constant G and the mass M of the ... more

Thermal de Broglie wavelength (Massless particles)

The thermal de Broglie wavelength is the average de Broglie wavelength of the gas particles in an ideal gas at the specified temperature. We can take the ... more

Kepler's Second Law

In astronomy, Kepler’s laws of planetary motion are three scientific laws describing the motion of planets around the Sun.

1.The orbit of a ... more

Bradley model of the force applied on a contact area between two spheres

Contact mechanics is the study of the deformation of solids that touch each other at one or more points. When two solid surfaces are brought into close ... more

Stokes' law (Excess force due to the difference of the weight of the sphere and the buoyancy on the sphere)

The weight of an object is the force on the object due to gravity. Buoyancy is an upward force exerted by a fluid that opposes the weight of an immersed ... more

Radial acceleration in circular motion ( related to period)

Uniform circular motion, that is constant speed along a circular path, is an example of a body experiencing acceleration resulting in velocity of a ... more

Dividend discount model ( Gordon growth model)

The dividend discount model is a method of valuing a company’s stock price based on the theory that its stock is worth the sum of all of its future ... more

Stark–Einstein Law

he Stark–Einstein law is named after German-born physicists Johannes Stark and Albert Einstein, who independently formulated the law between 1908 and 1913. ... more

Worksheet 308

Astrology, that unlikely and vague pseudoscience, makes much of the position of the planets at the moment of one’s birth. The only known force a planet exerts on Earth is gravitational.

(a) Calculate the gravitational force exerted on a 4.20 kg baby by a 100 kg father 0.200 m away at birth (he is assisting, so he is close to the child).

(b) Calculate the force on the baby due to Jupiter if it is at its closest distance to Earth, some 6.29e+11 m away. How does the force of Jupiter on the baby compare to the force of the father on the baby?

Father’s gravitational force on the baby is:

Newton's law of universal gravitation

Jupiter’s gravitational force on the baby is:

Newton's law of universal gravitation
Division

(c) What should be the father’s weight, so that he exerts the same force on the baby as that of Jupiter? **
**this section is not included in the Reference material

Newton's law of universal gravitation

Discussion

Other objects in the room and the hospital building also exert similar gravitational forces. (Of course, there could be an unknown force acting, but scientists first need to be convinced that there is even an effect, much less that an unknown force causes it.)

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Dedicated to little Konstantinos

Refractive Index ( absolute index of refraction )

The refractive index or index of refraction of a substance is a dimensionless number that describes how light, or any other radiation, propagates through ... more

...can't find what you're looking for?

Create a new formula