'

Search results

Found 1753 matches
Moment of inertia factor

In planetary sciences, the moment of inertia factor or normalized polar moment of inertia is a dimensionless quantity that characterizes the radial ... more

Lame's first parameter (in three dimensions)

In linear elasticity, the Lame parameters are the two parameters that constitute a parametrization of the elastic moduli for homogeneous isotopic media. ... more

Lame's first parameter (for two-dimensional solids)

In linear elasticity, the Lame parameters are the two parameters that constitute a parametrization of the elastic moduli for homogeneous isotopic media. ... more

Geometrical requirements for pin ended members - Given thickness

This formula calculates the geometrical requirements for pin ended members, specifically the minimum required distances from the pin hole edge to the plate ... more

Semi-Elliptic Laminated Leaf Spring (Stiffness)

Leaf spring, commonly used for the suspension in wheeled vehicles. The term is also used to refer to a bundled set of leaf springs. As the spring flexes, ... more

Load and Resistance Factor Design (LRFD) - Load combinations (eq5)

In structural engineering, a structure is a body or combination of pieces of rigid bodies in space to form a fitness system for supporting loads. ... more

Volume Fraction of the Fibers (Rule of mixtures)

In materials science, a general rule of mixtures is a weighted mean used to predict various properties of a composite material made up of continuous and ... more

Worksheet 306

Calculate the force the biceps muscle must exert to hold the forearm and its load as shown in the figure below, and compare this force with the weight of the forearm plus its load. You may take the data in the figure to be accurate to three significant figures.


(a) The figure shows the forearm of a person holding a book. The biceps exert a force FB to support the weight of the forearm and the book. The triceps are assumed to be relaxed. (b) Here, you can view an approximately equivalent mechanical system with the pivot at the elbow joint

Strategy

There are four forces acting on the forearm and its load (the system of interest). The magnitude of the force of the biceps is FB, that of the elbow joint is FE, that of the weights of the forearm is wa , and its load is wb. Two of these are unknown FB, so that the first condition for equilibrium cannot by itself yield FB . But if we use the second condition and choose the pivot to be at the elbow, then the torque due to FE is zero, and the only unknown becomes FB .

Solution

The torques created by the weights are clockwise relative to the pivot, while the torque created by the biceps is counterclockwise; thus, the second condition for equilibrium (net τ = 0) becomes

Force (Newton's second law)
Torque
Force (Newton's second law)
Torque

Note that sin θ = 1 for all forces, since θ = 90º for all forces. This equation can easily be solved for FB in terms of known quantities,yielding. Entering the known values gives

Mechanical equilibrium - 3=3 Torque example

which yields

Torque
Addition

Now, the combined weight of the arm and its load is known, so that the ratio of the force exerted by the biceps to the total weight is

Division

Discussion

This means that the biceps muscle is exerting a force 7.38 times the weight supported.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Allowable bearing capacity

In geotechnical engineering, bearing capacity is the capacity of soil to support the loads applied to the ground. The bearing capacity of soil is the ... more

Transverse wave velocity (shear wave)

A transverse (shear) wave is a moving wave that consists of oscillations occurring perpendicular (or right angled) to the direction of energy transfer. For ... more

...can't find what you're looking for?

Create a new formula