# Search results

In classical mechanics, linear momentum or translational momentum (pl. momenta; SI unit kg m/s, or equivalently, N s) is the product of the mass and ... more

Specific impulse (usually abbreviated Isp) is a measure of the efficiency of rocket and jet engines. By definition, it is the impulse delivered per unit of ... more

A sled experiences a rocket thrust that accelerates it to the right.Each rocket creates an identical thrust **T** . As in other situations where there is only horizontal acceleration, the vertical forces cancel. The ground exerts an upward force **N** on the system that is equal in magnitude and opposite in direction to its weight,**w**.The system here is the sled, its rockets, and rider, so none of the forces between these objects are considered. The arrow representing friction ( **f** ) is drawn larger than scale.

Assumptions: The mass of the Sled remains steady throughout the operation

Strategy

Although there are forces acting vertically and horizontally, we assume the vertical forces cancel since there is no vertical acceleration. This leaves us with only horizontal forces and a simpler one-dimensional problem. Directions are indicated with plus or minus signs, with right taken as the positive direction. See the free-body diagram in the figure.

Solution

Since acceleration, mass, and the force of friction are given, we start with Newton’s second law and look for ways to find the thrust of the engines. Since we have defined the direction of the force and acceleration as acting “to the right,” we need to consider only the magnitudes of these quantities in the calculations. Hence we begin with

**Fnet** is the net force along the horizontal direction, **m** is the rocket’s mass and **a** the acceleration.

We can see from the Figure at the top, that the engine thrusts add, while friction opposes the thrust.

**Tt** is the total thrust from the 4 rockets, **Fnet** the net force along the horizontal direction and **Ff** the force of friction.

Finally, since there are **4 rockets**, we calculate the thrust that each one provides:

**T** is the individual Thrust of each engine, **b** is the number of rocket engines

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.

http://openstaxcollege.org/textbooks/college-physics

Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Specific impulse (usually abbreviated Isp) is a measure of the efficiency of rocket and jet engines. By definition, it is the impulse delivered per unit of ... more

“Clearing the neighbourhood around its orbit” is a criterion for a celestial body to be considered a planet in the Solar System. This was one ... more

Calculate the force the biceps muscle must exert to hold the forearm and its load as shown in the figure below, and compare this force with the weight of the forearm plus its load. You may take the data in the figure to be accurate to three significant figures.

**(a)** The figure shows the forearm of a person holding a book. The biceps exert a force **F _{B}** to support the weight of the forearm and the book. The triceps are assumed to be relaxed.

**(b)**Here, you can view an approximately equivalent mechanical system with the pivot at the elbow joint

Strategy

There are four forces acting on the forearm and its load (the system of interest). The magnitude of the force of the biceps is **F _{B}**, that of the elbow joint is

**F**, that of the weights of the forearm is

_{E}**w**, and its load is

_{a}**w**. Two of these are unknown

_{b}**F**, so that the first condition for equilibrium cannot by itself yield

_{B}**F**. But if we use the second condition and choose the pivot to be at the elbow, then the torque due to

_{B}**F**is zero, and the only unknown becomes

_{E}**F**.

_{B}Solution

The torques created by the weights are clockwise relative to the pivot, while the torque created by the biceps is counterclockwise; thus, the second condition for equilibrium (net **τ = 0**) becomes

Note that **sin θ = 1** for all forces, since **θ = 90º** for all forces. This equation can easily be solved for **F _{B}** in terms of known quantities,yielding. Entering the known values gives

which yields

Now, the combined weight of the arm and its load is known, so that the ratio of the force exerted by the biceps to the total weight is

Discussion

This means that the biceps muscle is exerting a force **7.38** times the weight supported.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.

http://openstaxcollege.org/textbooks/college-physics

Creative Commons License : http://creativecommons.org/licenses/by/3.0/

In a video game design, a map shows the location of other characters relative to the player, who is situated at the origin, and the direction they are facing. A character currently shows on the map at coordinates **(-3, 5)**. If the player rotates counterclockwise by **20 degrees**, then the objects in the map will correspondingly rotate **20 degrees** clockwise. Find the new coordinates of the character.

To rotate the position of the character, we can imagine it as a point on a circle, and we will change the angle of the point by **20 degrees**. To do so, we first need to find the radius of this circle and the original angle.

Drawing a right triangle inside the circle, we can find the radius using the Pythagorean Theorem:

To find the angle, we need to decide first if we are going to find the acute angle of the triangle, the reference angle, or if we are going to find the angle measured in standard position. While either approach will work, in this case we will do the latter. By applying the cosine function and using our given information we get

While there are two angles that have this cosine value, the angle of **120.964** degrees is in the second quadrant as desired, so it is the angle we were looking for.

Rotating the point clockwise by **20 degrees**, the angle of the point will decrease to **100.964 degrees**. We can then evaluate the coordinates of the rotated point

For **x** axis:

For **y** axis:

The coordinates of the character on the rotated map will be **(-1.109, 5.725)**

Reference : PreCalculus: An Investigation of Functions,Edition 1.4 © 2014 David Lippman and Melonie Rasmussen

http://www.opentextbookstore.com/precalc/

Creative Commons License : http://creativecommons.org/licenses/by-sa/3.0/us/

...can't find what you're looking for?

Create a new formula
Prior to manned space flights, rocket sleds were used to test aircraft, missile equipment, and physiological effects on human subjects at high speeds. They consisted of a platform that was mounted on one or two rails and propelled by several rockets. Calculate the magnitude of force exerted by each rocket, called its thrust

T, for the four-rocket propulsion system shown in the Figure below. The sled’s initial acceleration is49 m/s, the mass of the system is^{2}2100 kg, and the force of friction opposing the motion is known to be650 N.