'

# Search results

Found 1456 matches
Worksheet 308

Astrology, that unlikely and vague pseudoscience, makes much of the position of the planets at the moment of one’s birth. The only known force a planet exerts on Earth is gravitational.

(a) Calculate the gravitational force exerted on a 4.20 kg baby by a 100 kg father 0.200 m away at birth (he is assisting, so he is close to the child).

(b) Calculate the force on the baby due to Jupiter if it is at its closest distance to Earth, some 6.29e+11 m away. How does the force of Jupiter on the baby compare to the force of the father on the baby?

Father’s gravitational force on the baby is:

Newton's law of universal gravitation

Jupiter’s gravitational force on the baby is:

Newton's law of universal gravitation
Division

(c) What should be the father’s weight, so that he exerts the same force on the baby as that of Jupiter? **
**this section is not included in the Reference material

Newton's law of universal gravitation

Discussion

Other objects in the room and the hospital building also exert similar gravitational forces. (Of course, there could be an unknown force acting, but scientists first need to be convinced that there is even an effect, much less that an unknown force causes it.)

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics

Dedicated to little Konstantinos

Moment of Inertia - Sphere (solid) - y axis

In physics and applied mathematics, the mass moment of inertia, usually denoted by I, measures the extent to which an object resists rotational ... more

Moment of Inertia - Rod end

Moment of inertia is the mass property of a rigid body that determines the torque needed for a desired angular acceleration about an axis of rotation. ... more

Moment of inertia of a thin rectangular plate (Axis of rotation at the end of the plate)

Moment of inertia is the mass property of a rigid body that determines the torque needed for a desired angular acceleration about an axis of rotation. ... more

Moment of Inertia - Right Circular Cone - x and y axis

In physics and applied mathematics, the mass moment of inertia, usually denoted by I, measures the extent to which an object resists rotational ... more

Moment of Inertia - Sphere (hollow)

In physics and applied mathematics, the mass moment of inertia, usually denoted by I, measures the extent to which an object resists rotational ... more

Moment of Inertia - Sphere (solid)

In physics and applied mathematics, the mass moment of inertia, usually denoted by I, measures the extent to which an object resists rotational ... more

Moment of inertia of a solid cuboid ( Axis of rotation at the height )

Moment of inertia is the mass property of a rigid body that defines the torque needed for a desired angular acceleration about an axis of rotation. Moment ... more

Moments of inertia for a solid tetrahedron

In physics and applied mathematics, the mass moment of inertia, measures the extent to which an object resists rotational acceleration about an axis, and ... more

Moment of Inertia - Right Circular Cone - z axis

In physics and applied mathematics, the mass moment of inertia, usually denoted by I, measures the extent to which an object resists rotational ... more

...can't find what you're looking for?

Create a new formula

### Search criteria:

Similar to formula
Category