'

Search results

Found 970 matches
Vis-Viva Equation - cirlcular orbit

In astrodynamics, the vis viva equation, also referred to as orbital energy conservation equation, is one of the fundamental equations that govern the ... more

Pressure dependence of the diffusion coefficient

Diffusivity or diffusion coefficient is a proportionality constant between the molar flux due to molecular diffusion and the gradient in the concentration ... more

Thermal Diffusivity

In heat transfer analysis, thermal diffusivity (usually denoted α but a, κ and D are also used) is the thermal conductivity divided by density and specific ... more

Worksheet 306

Calculate the force the biceps muscle must exert to hold the forearm and its load as shown in the figure below, and compare this force with the weight of the forearm plus its load. You may take the data in the figure to be accurate to three significant figures.


(a) The figure shows the forearm of a person holding a book. The biceps exert a force FB to support the weight of the forearm and the book. The triceps are assumed to be relaxed. (b) Here, you can view an approximately equivalent mechanical system with the pivot at the elbow joint

Strategy

There are four forces acting on the forearm and its load (the system of interest). The magnitude of the force of the biceps is FB, that of the elbow joint is FE, that of the weights of the forearm is wa , and its load is wb. Two of these are unknown FB, so that the first condition for equilibrium cannot by itself yield FB . But if we use the second condition and choose the pivot to be at the elbow, then the torque due to FE is zero, and the only unknown becomes FB .

Solution

The torques created by the weights are clockwise relative to the pivot, while the torque created by the biceps is counterclockwise; thus, the second condition for equilibrium (net τ = 0) becomes

Force (Newton's second law)
Torque
Force (Newton's second law)
Torque

Note that sin θ = 1 for all forces, since θ = 90º for all forces. This equation can easily be solved for FB in terms of known quantities,yielding. Entering the known values gives

Mechanical equilibrium - 3=3 Torque example

which yields

Torque
Addition

Now, the combined weight of the arm and its load is known, so that the ratio of the force exerted by the biceps to the total weight is

Division

Discussion

This means that the biceps muscle is exerting a force 7.38 times the weight supported.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Frequency of a string under tension (nth harmonic)

A vibration in a string is a wave. Resonance causes a vibrating string to produce a sound with constant frequency, i.e. constant pitch. If the length or ... more

Bernoulli’s Equation (conservation of energy)

Bernoulli’s equation states that for an incompressible, frictionless fluid, the above mentioned sum is constant. If we follow a small volume of fluid along ... more

Ideal rocket equation (Tsiolkovsky rocket equation)

The Tsiolkovsky rocket equation, or ideal rocket equation describes the motion of vehicles that follow the basic principle of a rocket: a ... more

Gibbs free energy calculator

The Gibbs free energy is a thermodynamic potential that measures the “usefulness” or process-initiating work obtainable from a thermodynamic ... more

Relativistic kinetic energy of rigid bodies

In physics, the kinetic energy of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a ... more

Properties of concrete - modulus of elasticity (AASHTO)

The modulus of elasticity of concrete is a function of the modulus of elasticity of the aggregates and the cement matrix and their relative proportions. ... more

...can't find what you're looking for?

Create a new formula