'

Search results

Found 874 matches
Voltage gain - simplified formula (for equal impedances)

The power gain can be calculated using voltage instead of power using Joule’s first law to calculate a voltage gain. In many cases, the input and ... more

Total harmonic distortion

The total harmonic distortion, or THD, of a signal is a measurement of the harmonic distortion present and is defined as the ... more

Magnus effect

The Magnus effect is the commonly observed effect in which a spinning ball (or cylinder) curves away from its principal flight path.The overall behaviour ... more

Impulse (Velocity)

Impulse is the product of a force and the time, for which it acts. The impulse of a force acting for a given time interval is equal to the change in linear ... more

Perfectly inelastic collision

A collision is an isolated event in which two or more moving bodies (colliding bodies) exert forces on each other for a relatively short time. Collision is ... more

Force due to water hammer (Slow valve closure)

Water hammer (or, more generally, fluid hammer) is a pressure surge or wave caused when a fluid (usually a liquid but sometimes also a gas) in motion is ... more

Closed magnetic circuit ( Lorentz force )

An electromagnet is a type of magnet in which the magnetic field is produced by electric current. The magnetic field disappears when the current is turned ... more

Stokes' law

Stokes’ law is an expression for the frictional force – also called drag force – exerted on spherical objects with very small Reynolds numbers (e.g., ... more

Horizontal Curve - Allowable radius

The allowable radius for a horizontal curve can then be determined by knowing the intended design velocity, the coefficient of friction, and the allowed ... more

Worksheet 333

A typical small rescue helicopter, like the one in the Figure below, has four blades, each is 4.00 m long and has a mass of 50.0 kg. The blades can be approximated as thin rods that rotate about one end of an axis perpendicular to their length. The helicopter has a total loaded mass of 1000 kg. (a) Calculate the rotational kinetic energy in the blades when they rotate at 300 rpm. (b) Calculate the translational kinetic energy of the helicopter when it flies at 20.0 m/s, and compare it with the rotational energy in the blades. (c) To what height could the helicopter be raised if all of the rotational kinetic energy could be used to lift it?


The first image shows how helicopters store large amounts of rotational kinetic energy in their blades. This energy must be put into the blades before takeoff and maintained until the end of the flight. The engines do not have enough power to simultaneously provide lift and put significant rotational energy into the blades.
The second image shows a helicopter from the Auckland Westpac Rescue Helicopter Service. Over 50,000 lives have been saved since its operations beginning in 1973. Here, a water rescue operation is shown. (credit: 111 Emergency, Flickr)

Strategy

Rotational and translational kinetic energies can be calculated from their definitions. The last part of the problem relates to the idea that energy can change form, in this case from rotational kinetic energy to gravitational potential energy.

Solution for (a)

We must convert the angular velocity to radians per second and calculate the moment of inertia before we can find Er . The angular velocity ω for 1 r.p.m is

Angular velocity

and for 300 r.p.m

Multiplication

The moment of inertia of one blade will be that of a thin rod rotated about its end.

Moment of Inertia - Rod end

The total I is four times this moment of inertia, because there are four blades. Thus,

Multiplication

and so The rotational kinetic energy is

Rotational energy

Solution for (b)

Translational kinetic energy is defined as

Kinetic energy ( related to the object 's velocity )

To compare kinetic energies, we take the ratio of translational kinetic energy to rotational kinetic energy. This ratio is

Division

Solution for (c)

At the maximum height, all rotational kinetic energy will have been converted to gravitational energy. To find this height, we equate those two energies:

Potential energy

Discussion

The ratio of translational energy to rotational kinetic energy is only 0.380. This ratio tells us that most of the kinetic energy of the helicopter is in its spinning blades—something you probably would not suspect. The 53.7 m height to which the helicopter could be raised with the rotational kinetic energy is also impressive, again emphasizing the amount of rotational kinetic energy in the blades.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

...can't find what you're looking for?

Create a new formula