'

Search results

Found 724 matches
Triangle area

Triangle is a polygon with three edges and three vertices. The area of a triangle with base length b and height length h is given by multiplying base ... more

Luminosity of a Star

In astronomy, luminosity is the total amount of energy emitted by a star, galaxy, or other astronomical object per unit time. It is related to brightness, ... more

Horizontal Curve - Degree of curve

Aside from momentum, when a vehicle makes a turn, two forces are acting upon it. The first is gravity, which pulls the vehicle toward the ground. The ... more

Darcy friction factor - Laminar flow

In fluid dynamics, the Darcy friction factor formulae are equations that allow the calculation of the Darcy friction factor, a dimensionless quantity used ... more

Damping ratio ( related to damping coefficients)

Linear damping occurs when a potentially oscillatory variable is damped by an influence that opposes changes in it, in direct proportion to the ... more

Shear rate at the inner wall of a Newtonian fluid (flowing within a pipe)

A Newtonian fluid is a fluid in which the viscous stresses arising from its flow, at every point, are proportional to the local strain rate — the rate of ... more

Mean arterial pressure

The mean arterial pressure (MAP) is the average over a cardiac cycle and is determined from measurements of the systolic pressure ... more

Worksheet 306

Calculate the force the biceps muscle must exert to hold the forearm and its load as shown in the figure below, and compare this force with the weight of the forearm plus its load. You may take the data in the figure to be accurate to three significant figures.


(a) The figure shows the forearm of a person holding a book. The biceps exert a force FB to support the weight of the forearm and the book. The triceps are assumed to be relaxed. (b) Here, you can view an approximately equivalent mechanical system with the pivot at the elbow joint

Strategy

There are four forces acting on the forearm and its load (the system of interest). The magnitude of the force of the biceps is FB, that of the elbow joint is FE, that of the weights of the forearm is wa , and its load is wb. Two of these are unknown FB, so that the first condition for equilibrium cannot by itself yield FB . But if we use the second condition and choose the pivot to be at the elbow, then the torque due to FE is zero, and the only unknown becomes FB .

Solution

The torques created by the weights are clockwise relative to the pivot, while the torque created by the biceps is counterclockwise; thus, the second condition for equilibrium (net τ = 0) becomes

Force (Newton's second law)
Torque
Force (Newton's second law)
Torque

Note that sin θ = 1 for all forces, since θ = 90º for all forces. This equation can easily be solved for FB in terms of known quantities,yielding. Entering the known values gives

Mechanical equilibrium - 3=3 Torque example

which yields

Torque
Addition

Now, the combined weight of the arm and its load is known, so that the ratio of the force exerted by the biceps to the total weight is

Division

Discussion

This means that the biceps muscle is exerting a force 7.38 times the weight supported.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Redlich-Kwong (b - constant)

Introduced in 1949, the Redlich-Kwong equation of state was a considerable improvement over other equations of the time. It is still of interest primarily ... more

Net Profit Margin

Profit margin, net margin, net profit margin or net profit ratio all refer to a measure of profitability. It is calculated by finding the net profit as a ... more

...can't find what you're looking for?

Create a new formula