'

Search results

Found 797 matches
Tractive Force

As used in mechanical engineering, the term tractive force can either refer to the total traction a vehicle exerts on a surface, or the amount of the total ... more

Intendation area for Vickers hardness test

The basic principle of the Vickers hardness test, as with all common measures of hardness, is to observe the questioned material’s ability to resist ... more

Mean Time Between Failures - MTBF

Mean time between failures (MTBF) is the predicted elapsed time between inherent failures of a system during operation. ... more

Bayes estimator - Internet Movie Database (IMDB)

In estimation theory and decision theory, a Bayes estimator or a Bayes action is an estimator or decision rule that minimizes the posterior expected value ... more

Lambert cylindrical equal-area projection(X-coordinate)

In cartography, the Lambert cylindrical equal-area projection, or Lambert cylindrical projection, is a cylindrical, equal area map projection. It is a ... more

West number

The West number is an empirical parameter used to characterize the performance of Stirling engines and other Stirling systems. A Stirling engine is a heat ... more

Vickers hardness number for a giving area

The hardness number is determined by the load over the surface area of the indentation and not the area normal to the force, and is therefore not ... more

Mechanical equilibrium - 3=3 Force example

A mechanical equilibrium is a state in which a momentum coordinate of a particle, rigid body, or dynamical system is conserved. Usually this refers to ... more

Worksheet 289

Prior to manned space flights, rocket sleds were used to test aircraft, missile equipment, and physiological effects on human subjects at high speeds. They consisted of a platform that was mounted on one or two rails and propelled by several rockets. Calculate the magnitude of force exerted by each rocket, called its thrust T , for the four-rocket propulsion system shown in the Figure below. The sled’s initial acceleration is 49 m/s 2, the mass of the system is 2100 kg, and the force of friction opposing the motion is known to be 650 N.

A sled experiences a rocket thrust that accelerates it to the right.Each rocket creates an identical thrust T . As in other situations where there is only horizontal acceleration, the vertical forces cancel. The ground exerts an upward force N on the system that is equal in magnitude and opposite in direction to its weight,w.The system here is the sled, its rockets, and rider, so none of the forces between these objects are considered. The arrow representing friction ( f ) is drawn larger than scale.
Assumptions: The mass of the Sled remains steady throughout the operation

Strategy

Although there are forces acting vertically and horizontally, we assume the vertical forces cancel since there is no vertical acceleration. This leaves us with only horizontal forces and a simpler one-dimensional problem. Directions are indicated with plus or minus signs, with right taken as the positive direction. See the free-body diagram in the figure.

Solution

Since acceleration, mass, and the force of friction are given, we start with Newton’s second law and look for ways to find the thrust of the engines. Since we have defined the direction of the force and acceleration as acting “to the right,” we need to consider only the magnitudes of these quantities in the calculations. Hence we begin with

Force (Newton's second law)

Fnet is the net force along the horizontal direction, m is the rocket’s mass and a the acceleration.

We can see from the Figure at the top, that the engine thrusts add, while friction opposes the thrust.

Subtraction

Tt is the total thrust from the 4 rockets, Fnet the net force along the horizontal direction and Ff the force of friction.

Finally, since there are 4 rockets, we calculate the thrust that each one provides:

Division

T is the individual Thrust of each engine, b is the number of rocket engines

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Rydberg formula - For hydrogen-like element

The Rydberg formula is used in atomic physics to describe the wavelengths of spectral lines of many chemical elements. It was formulated by the Swedish ... more

...can't find what you're looking for?

Create a new formula