private formula
In biology or human geography, population growth is the increase in the number of individuals in a population.
The “population growth rate” is the rate at which the number of individuals in a population increases in a given time period, expressed as a fraction of the initial population. Specifically, population growth rate refers to the change in population over a unit time period, often expressed as a percentage of the number of individuals in the population at the beginning of that period. This can be written as the shown formula, valid for a sufficiently small time interval.
Most populations do not grow exponentially, rather they follow a logistic model. Once the population has reached its carrying capacity, it will stabilize and the exponential curve will level off towards the carrying capacity, which is usually when a population has depleted most its natural resources.
As the logistic equation is a separable differential equation, the population may be solved explicitly by the shown formula
| Pt | The population after time t (people) |
| M | (dimensionless) |
| K | the carrying capacity of the population (people) |
| A | (dimensionless) |
| t | time of the estimation (year) (dimensionless) |