# Bragg's Law - Lattice Spacing in Cubic Systems

## Description

In physics, Bragg’s law, or Wulff–Bragg’s condition, a special case of Laue diffraction, gives the angles for coherent and incoherent scattering from a crystal lattice. When X-rays are incident on an atom, they make the electronic cloud move as does any electromagnetic wave. The movement of these charges re-radiates waves with the same frequency, blurred slightly due to a variety of effects; this phenomenon is known as Rayleigh scattering (or elastic scattering). The scattered waves can themselves be scattered but this secondary scattering is assumed to be negligible.

A similar process occurs upon scattering neutron waves from the nuclei or by a coherent spin interaction with an unpaired electron. These re-emitted wave fields interfere with each other either constructively or destructively (overlapping waves either add up together to produce stronger peaks or are subtracted from each other to some degree), producing a diffraction pattern on a detector or film. The resulting wave interference pattern is the basis of diffraction analysis. This analysis is called Bragg diffraction.

Bragg condition

Bragg diffraction. Two beams with identical wavelength and phase approach a crystalline solid and are scattered off two different atoms within it. The lower beam traverses an extra length of 2dsinθ. Constructive interference occurs when this length is equal to an integer multiple of the wavelength of the radiation.

Bragg diffraction occurs when radiation, with a wavelength comparable to atomic spacings, is scattered in a specular fashion by the atoms of a crystalline system, and undergoes constructive interference. For a crystalline solid, the waves are scattered from lattice planes separated by the interplanar distance d. When the scattered waves interfere constructively, they remain in phase since the difference between the path lengths of the two waves is equal to an integer multiple of the wavelength. The path difference between two waves undergoing interference is given by 2dsinθ, where θ is the scattering angle (see figure on the right). The effect of the constructive or destructive interference intensifies because of the cumulative effect of reflection in successive crystallographic planes of the crystalline lattice (as described by Miller notation).

Bragg’s law can be used to obtain the lattice spacing of a particular cubic system through the relation shown here.

Related formulas## Variables

λ | wavelength of the incident wave (m) |

a | lattice spacing of the cubic crystal (m) |

d | interplanar distance (m) |

h | Miller indice of the Bragg plane (dimensionless) |

k | Miller indice of the Bragg plane (dimensionless) |

l | Miller indice of the Bragg plane (dimensionless) |