Search results

Found 1059 matches
Smeed's Law

Smeed’s Law, named after R. J. Smeed, who first proposed the relationship in 1949, is an empirical rule relating traffic fatalities to traffic ... more

Graveyard Orbit - Minimum Perigee Altitude

A graveyard orbit, also called a junk orbit or disposal orbit, is a supersynchronous orbit that lies significantly above synchronous orbit, where ... more

Worksheet 333

A typical small rescue helicopter, like the one in the Figure below, has four blades, each is 4.00 m long and has a mass of 50.0 kg. The blades can be approximated as thin rods that rotate about one end of an axis perpendicular to their length. The helicopter has a total loaded mass of 1000 kg. (a) Calculate the rotational kinetic energy in the blades when they rotate at 300 rpm. (b) Calculate the translational kinetic energy of the helicopter when it flies at 20.0 m/s, and compare it with the rotational energy in the blades. (c) To what height could the helicopter be raised if all of the rotational kinetic energy could be used to lift it?

The first image shows how helicopters store large amounts of rotational kinetic energy in their blades. This energy must be put into the blades before takeoff and maintained until the end of the flight. The engines do not have enough power to simultaneously provide lift and put significant rotational energy into the blades.
The second image shows a helicopter from the Auckland Westpac Rescue Helicopter Service. Over 50,000 lives have been saved since its operations beginning in 1973. Here, a water rescue operation is shown. (credit: 111 Emergency, Flickr)


Rotational and translational kinetic energies can be calculated from their definitions. The last part of the problem relates to the idea that energy can change form, in this case from rotational kinetic energy to gravitational potential energy.

Solution for (a)

We must convert the angular velocity to radians per second and calculate the moment of inertia before we can find Er . The angular velocity ω for 1 r.p.m is

Angular velocity

and for 300 r.p.m


The moment of inertia of one blade will be that of a thin rod rotated about its end.

Moment of Inertia - Rod end

The total I is four times this moment of inertia, because there are four blades. Thus,


and so The rotational kinetic energy is

Rotational energy

Solution for (b)

Translational kinetic energy is defined as

Kinetic energy ( related to the object 's velocity )

To compare kinetic energies, we take the ratio of translational kinetic energy to rotational kinetic energy. This ratio is


Solution for (c)

At the maximum height, all rotational kinetic energy will have been converted to gravitational energy. To find this height, we equate those two energies:

Potential energy


The ratio of translational energy to rotational kinetic energy is only 0.380. This ratio tells us that most of the kinetic energy of the helicopter is in its spinning blades—something you probably would not suspect. The 53.7 m height to which the helicopter could be raised with the rotational kinetic energy is also impressive, again emphasizing the amount of rotational kinetic energy in the blades.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Seiche - 'c' factor related to the period of underwater internal waves

A seiche (/ˈseɪʃ/ SAYSH) is a standing wave in an enclosed or partially enclosed body of water. Seiches and seiche-related ... more

Seiche - Longest natural period (Merian's formula)

A seiche (/ˈseɪʃ/ SAYSH) is a standing wave in an enclosed or partially enclosed body of water. Seiches and seiche-related ... more

Weber Number

The Weber number (We) is a dimensionless number in fluid mechanics that is often useful in analysing fluid flows where there is an interface between two ... more

Curved Area of a Frustum of a Right Circulacircular Cone

The curved area of the frustum cone, can be calculated from the radius of the lower base and the radius of the upper base and the height of the cone (the ... more

Radius of the rim of a paraboloidal dish

The elliptic paraboloid is shaped like an oval cup and can have a maximum or minimum point. In a suitable coordinate system with three axes x, y, and z, it ... more

Magnus effect

The Magnus effect is the commonly observed effect in which a spinning ball (or cylinder) curves away from its principal flight path.The overall behaviour ... more


In classical geometry, a radius of a circle or sphere is any of the line segments from its center to its perimeter, and in more modern usage, it is also ... more

...can't find what you're looking for?

Create a new formula