'

Search results

Found 1969 matches
Torque - to overcome rolling resistance

Torque, is the tendency of a force to rotate an object about an axis, fulcrum, or pivot. Just as a force is a push or a pull, a torque can be thought of as ... more

Physical Pendulum

A pendulum is a mass that is attached to a pivot, from which it can swing freely. Pendulum consisting of an actual object allowed to rotate freely around a ... more

Drag equation ( for fluids)

Drag (sometimes called air resistance, a type of friction, or fluid resistance, another type of friction or fluid friction) refers to forces acting ... more

Power (aerodynamic drag)

In fluid dynamics, drag (sometimes called air resistance, a type of friction, or fluid resistance, another type of friction or fluid friction) is a force ... more

Critical Damping Coefficient (related to the natural frequency)

A harmonic oscillator is a system that, when displaced from its equilibrium position, experiences a restoring force, proportional to the displacement. If a ... more

Angle required to hit polar coordinate (x,y) - (projectile following a ballistic trajectory)

In physics, the ballistic trajectory of a projectile is the path that a thrown or launched projectile or missile without propulsion will take under the ... more

Electromagnetic mass (transverse mass) by Lorentz

Due to the self-induction effect, electrostatic energy behaves as having some sort of momentum and “apparent” electromagnetic mass, which can increase the ... more

Kinetic energy (related to object's momentum)

In physics, the kinetic energy of an object is the energy that it possesses due to its motion. It is the work needed to accelerate a body of a given mass ... more

Worksheet 306

Calculate the force the biceps muscle must exert to hold the forearm and its load as shown in the figure below, and compare this force with the weight of the forearm plus its load. You may take the data in the figure to be accurate to three significant figures.


(a) The figure shows the forearm of a person holding a book. The biceps exert a force FB to support the weight of the forearm and the book. The triceps are assumed to be relaxed. (b) Here, you can view an approximately equivalent mechanical system with the pivot at the elbow joint

Strategy

There are four forces acting on the forearm and its load (the system of interest). The magnitude of the force of the biceps is FB, that of the elbow joint is FE, that of the weights of the forearm is wa , and its load is wb. Two of these are unknown FB, so that the first condition for equilibrium cannot by itself yield FB . But if we use the second condition and choose the pivot to be at the elbow, then the torque due to FE is zero, and the only unknown becomes FB .

Solution

The torques created by the weights are clockwise relative to the pivot, while the torque created by the biceps is counterclockwise; thus, the second condition for equilibrium (net τ = 0) becomes

Force (Newton's second law)
Torque
Force (Newton's second law)
Torque

Note that sin θ = 1 for all forces, since θ = 90º for all forces. This equation can easily be solved for FB in terms of known quantities,yielding. Entering the known values gives

Mechanical equilibrium - 3=3 Torque example

which yields

Torque
Addition

Now, the combined weight of the arm and its load is known, so that the ratio of the force exerted by the biceps to the total weight is

Division

Discussion

This means that the biceps muscle is exerting a force 7.38 times the weight supported.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Linear eccentricity of the hyperbola

Hyperbola is the set of all points in the plane, such that the absolute value of the difference of each of the distances from two fixed points is constant. ... more

...can't find what you're looking for?

Create a new formula