'

Search results

Found 1211 matches
Arithmetic Standard Deviation - 2nd moment

Shows how much variation or dispersion from the average exists, on the particles’ size distribution of a soil, in metric scale. Arithmetic mean size (1st ... more

Logarithmic Mean Size - 1st moment

Calculates the logarithmic mean size (moments method) of the particles’ size distribution of a soil, in phi scale

... more

Geometric Kurtosis - 4th moment

Is a measure that describes the “tailedness” of the probability distribution of a real-valued random variable. Geometric mean size (1st moment) ... more

Logarithmic Standard Deviation - 2nd moment

Shows how much variation or dispersion from the average exists. Logarithmic mean size (1st moment) needs to be precalculated.

... more

Logarithmic Kurtosis - 4th moment

Is a measure that describes tthe “tailedness” of the probability distribution of a real-valued random variable. Particles logarithmic mean size ... more

Weighted arithmetic mean

The weighted mean is similar to an arithmetic mean (the most common type of average), where instead of each of the data points contributing equally to the ... more

Standard Error

The standard error (SE) is the standard deviation of the sampling distribution of a statistic. The term may also be used to refer to an estimate of that ... more

Margin of error - Effect of population size

The margin of error is a statistic expressing the amount of random sampling error in a survey’s results. The larger the margin of error, the less ... more

Weighted power mean

The weighted mean is similar to an arithmetic mean (the most common type of average), where instead of each of the data points contributing equally to the ... more

Weighted geometric mean

In mathematics, the geometric mean is a type of mean or average, which indicates the central tendency or typical value of a set of numbers by using the ... more

Arithmetic Mean

Arithmetic mean is the sum of a collection of numbers divided by the number of numbers in the collection. The collection is often a set of results of an ... more

Specific gravity of solids

Silts, sands and gravels are classified by their size, and hence they may consist of a variety of minerals. Owing to the stability of quartz compared to ... more

Relative density of soil

Silts, sands and gravels are classified by their size, and hence they may consist of a variety of minerals. Owing to the stability of quartz compared to ... more

Tortuosity - alternative method

Tortuosity is a property of curve being tortuous (twisted; having many turns). There have been several attempts to quantify this property. ... more

Porosity

The volume of the voids of a soil over the total volume of the sample defines the porosity of a soil. Used in geology, hydrogeology, soil science, and ... more

Worksheet 306

Calculate the force the biceps muscle must exert to hold the forearm and its load as shown in the figure below, and compare this force with the weight of the forearm plus its load. You may take the data in the figure to be accurate to three significant figures.


(a) The figure shows the forearm of a person holding a book. The biceps exert a force FB to support the weight of the forearm and the book. The triceps are assumed to be relaxed. (b) Here, you can view an approximately equivalent mechanical system with the pivot at the elbow joint

Strategy

There are four forces acting on the forearm and its load (the system of interest). The magnitude of the force of the biceps is FB, that of the elbow joint is FE, that of the weights of the forearm is wa , and its load is wb. Two of these are unknown FB, so that the first condition for equilibrium cannot by itself yield FB . But if we use the second condition and choose the pivot to be at the elbow, then the torque due to FE is zero, and the only unknown becomes FB .

Solution

The torques created by the weights are clockwise relative to the pivot, while the torque created by the biceps is counterclockwise; thus, the second condition for equilibrium (net τ = 0) becomes

Force (Newton's second law)
Torque
Force (Newton's second law)
Torque

Note that sin θ = 1 for all forces, since θ = 90º for all forces. This equation can easily be solved for FB in terms of known quantities,yielding. Entering the known values gives

Mechanical equilibrium - 3=3 Torque example

which yields

Torque
Addition

Now, the combined weight of the arm and its load is known, so that the ratio of the force exerted by the biceps to the total weight is

Division

Discussion

This means that the biceps muscle is exerting a force 7.38 times the weight supported.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Tortuosity

Tortuosity is a property of curve being tortuous (twisted; having many turns). There have been several attempts to quantify this property. ... more

Worksheet 333

A typical small rescue helicopter, like the one in the Figure below, has four blades, each is 4.00 m long and has a mass of 50.0 kg. The blades can be approximated as thin rods that rotate about one end of an axis perpendicular to their length. The helicopter has a total loaded mass of 1000 kg. (a) Calculate the rotational kinetic energy in the blades when they rotate at 300 rpm. (b) Calculate the translational kinetic energy of the helicopter when it flies at 20.0 m/s, and compare it with the rotational energy in the blades. (c) To what height could the helicopter be raised if all of the rotational kinetic energy could be used to lift it?


The first image shows how helicopters store large amounts of rotational kinetic energy in their blades. This energy must be put into the blades before takeoff and maintained until the end of the flight. The engines do not have enough power to simultaneously provide lift and put significant rotational energy into the blades.
The second image shows a helicopter from the Auckland Westpac Rescue Helicopter Service. Over 50,000 lives have been saved since its operations beginning in 1973. Here, a water rescue operation is shown. (credit: 111 Emergency, Flickr)

Strategy

Rotational and translational kinetic energies can be calculated from their definitions. The last part of the problem relates to the idea that energy can change form, in this case from rotational kinetic energy to gravitational potential energy.

Solution for (a)

We must convert the angular velocity to radians per second and calculate the moment of inertia before we can find Er . The angular velocity ω for 1 r.p.m is

Angular velocity

and for 300 r.p.m

Multiplication

The moment of inertia of one blade will be that of a thin rod rotated about its end.

Moment of Inertia - Rod end

The total I is four times this moment of inertia, because there are four blades. Thus,

Multiplication

and so The rotational kinetic energy is

Rotational energy

Solution for (b)

Translational kinetic energy is defined as

Kinetic energy ( related to the object 's velocity )

To compare kinetic energies, we take the ratio of translational kinetic energy to rotational kinetic energy. This ratio is

Division

Solution for (c)

At the maximum height, all rotational kinetic energy will have been converted to gravitational energy. To find this height, we equate those two energies:

Potential energy

Discussion

The ratio of translational energy to rotational kinetic energy is only 0.380. This ratio tells us that most of the kinetic energy of the helicopter is in its spinning blades—something you probably would not suspect. The 53.7 m height to which the helicopter could be raised with the rotational kinetic energy is also impressive, again emphasizing the amount of rotational kinetic energy in the blades.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Graphic mean size

For a particle size distribution, the graphic mean size can be estimated from the percentages of the particles corresponding to the 16%, 50% and 84%

... more

Worksheet 341

The awe‐inspiring Great Pyramid of Cheops was built more than 4500 years ago. Its square base, originally 230 m on a side, covered 13.1 acres, and it was 146 m high (H), with a mass of about 7×10^9 kg. (The pyramid’s dimensions are slightly different today due to quarrying and some sagging). Historians estimate that 20,000 workers spent 20 years to construct it, working 12-hour days, 330 days per year.

a) Calculate the gravitational potential energy stored in the pyramid, given its center of mass is at one-fourth its height.

Division
Potential energy

b) Only a fraction of the workers lifted blocks; most were involved in support services such as building ramps, bringing food and water, and hauling blocks to the site. Calculate the efficiency of the workers who did the lifting, assuming there were 1000 of them and they consumed food energy at the rate of 300 Kcal/hour.

first we calculate the number of hours worked per year.

Multiplication

then we calculate the number of hours worked in the 20 years.

Multiplication

Then we calculate the energy consumed in 20 years knowing the energy consumed per hour and the total hours worked in 20 years.

Multiplication
Multiplication

The efficiency is the resulting potential energy divided by the consumed energy.

Division
Binomial distribution

Binomial distribution, with parameters n and p, is the discrete probability distribution of the number of successes in a sequence of n independent yes/no ... more

Volume-based particle size

Particle size is a notion introduced for comparing dimensions of solid particles (flecks), liquid particles (droplets), or gaseous particles (bubbles).
... more

Area-based particle size

Particle size is a notion introduced for comparing dimensions of solid particles (flecks), liquid particles (droplets), or gaseous particles (bubbles).
... more

Variance of the sample kurtosis of a sample of size n

In statistics and quantitative research methodology, a data sample is a set of data collected and/or selected from a statistical population by a defined ... more

IT Grade

IT Grade refers to the International Tolerance Grade of an industrial process defined in ISO 286. This grade identifies what ... more

Vertical Curve - Parabolic formula

Vertical Curves are the second of the two important transition elements in geometric design for highways, the first being Horizontal Curves. A vertical ... more

Final Grade conversion to the German system - Bavarian Formular

A number of systems exist for the conversion of grades from other countries into German grades. One such system, used by most universities in ... more

Cauchy–Lorentz distribution (cumulative distribution function)

In probability and statistics,the Cauchy distribution, is a continuous probability distribution. The Cauchy distribution is often used in statistics as the ... more

Infiltration

Infiltration is the process by which water on the ground surface enters the soil. Infiltration rate in soil science is a measure of the rate at which soil ... more

Moment magnitude scale

The Moment magnitude scale is used to measure the size of earthquakes in terms of the energy released.The magnitude is based on the seismic moment of the ... more

...can't find what you're looking for?

Create a new formula