'

Search results

Found 1193 matches
Logarithmic Kurtosis - 4th moment

Is a measure that describes tthe “tailedness” of the probability distribution of a real-valued random variable. Particles logarithmic mean size ... more

Geometric Kurtosis - 4th moment

Is a measure that describes the “tailedness” of the probability distribution of a real-valued random variable. Geometric mean size (1st moment) ... more

Arithmetic Standard Deviation - 2nd moment

Shows how much variation or dispersion from the average exists, on the particles’ size distribution of a soil, in metric scale. Arithmetic mean size (1st ... more

Logarithmic Mean Size - 1st moment

Calculates the logarithmic mean size (moments method) of the particles’ size distribution of a soil, in phi scale

... more

Arithmetic mean size - 1st moment

Calculates the arithmetic mean size (arithmetic method of moments) of the particles’ size distribution of a soil, in metric scale. In statistics, the ... more

Weighted geometric mean

In mathematics, the geometric mean is a type of mean or average, which indicates the central tendency or typical value of a set of numbers by using the ... more

Relation between the standard deviation of logarithmized sample and the non-logarithmized sample values

Log-normal (or lognormal) distribution is a continuous probability distribution of a random variable whose logarithm is normally distributed. The standard ... more

Probability density function of a log-normal distribution

In probability theory, a probability distribution assigns a probability to each measurable subset of the possible outcomes of a random experiment, survey, ... more

Particle diameter (phi scale)

Particle size, also called grain size, refers to the diameter of individual grains of sediment, or the lithified particles in clastic rocks.
Size ... more

IT Grade

IT Grade refers to the International Tolerance Grade of an industrial process defined in ISO 286. This grade identifies what ... more

Perfectly inelastic collision

A collision is an isolated event in which two or more moving bodies (colliding bodies) exert forces on each other for a relatively short time. Collision is ... more

Generalized volatility for time T

In finance, volatility is a measure for variation of price of a financial instrument over time. An implied volatility is derived from the market price of a ... more

Annualized volatility

In finance, volatility is a measure for variation of price of a financial instrument over time. return is a profit on an investment. It comprises any ... more

Vertical Curve - Parabolic formula

Vertical Curves are the second of the two important transition elements in geometric design for highways, the first being Horizontal Curves. A vertical ... more

Final Grade conversion to the German system - Bavarian Formular

A number of systems exist for the conversion of grades from other countries into German grades. One such system, used by most universities in ... more

Standard Error

The standard error (SE) is the standard deviation of the sampling distribution of a statistic. The term may also be used to refer to an estimate of that ... more

Volume-based particle size

Particle size is a notion introduced for comparing dimensions of solid particles (flecks), liquid particles (droplets), or gaseous particles (bubbles).
... more

Area-based particle size

Particle size is a notion introduced for comparing dimensions of solid particles (flecks), liquid particles (droplets), or gaseous particles (bubbles).
... more

Standard Gravitational Parameter - Two bodies orbiting each other

In celestial mechanics, the standard gravitational parameter μ of a celestial body is the product of the gravitational constant G and the mass M of the ... more

Graphic Standard Deviation

Is an approximate measure of sorting or variation of a particle size distribution in phi scale; can be estimated from the percentages of the particles ... more

Worksheet 306

Calculate the force the biceps muscle must exert to hold the forearm and its load as shown in the figure below, and compare this force with the weight of the forearm plus its load. You may take the data in the figure to be accurate to three significant figures.


(a) The figure shows the forearm of a person holding a book. The biceps exert a force FB to support the weight of the forearm and the book. The triceps are assumed to be relaxed. (b) Here, you can view an approximately equivalent mechanical system with the pivot at the elbow joint

Strategy

There are four forces acting on the forearm and its load (the system of interest). The magnitude of the force of the biceps is FB, that of the elbow joint is FE, that of the weights of the forearm is wa , and its load is wb. Two of these are unknown FB, so that the first condition for equilibrium cannot by itself yield FB . But if we use the second condition and choose the pivot to be at the elbow, then the torque due to FE is zero, and the only unknown becomes FB .

Solution

The torques created by the weights are clockwise relative to the pivot, while the torque created by the biceps is counterclockwise; thus, the second condition for equilibrium (net Ï„ = 0) becomes

Force (Newton's second law)
Torque
Force (Newton's second law)
Torque

Note that sin θ = 1 for all forces, since θ = 90º for all forces. This equation can easily be solved for FB in terms of known quantities,yielding. Entering the known values gives

Mechanical equilibrium - 3=3 Torque example

which yields

Torque
Addition

Now, the combined weight of the arm and its load is known, so that the ratio of the force exerted by the biceps to the total weight is

Division

Discussion

This means that the biceps muscle is exerting a force 7.38 times the weight supported.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Kepler's Third Law

In astronomy, Kepler’s laws of planetary motion are three scientific laws describing the motion of planets around the Sun.

1.The orbit of a ... more

Crest curve length when S>L (Vertical curves for highway design)

Crest vertical curves are curves which, when viewed from the side, are convex upwards. This includes vertical curves at hill crests, but it also includes ... more

Crest curve length when S<L (Vertical curves for highway design)

Crest vertical curves are curves which, when viewed from the side, are convex upwards. This includes vertical curves at hill crests, but it also includes ... more

Sag curve length when S<L (Vertical curves for highway design)

When a driver is driving on a sag curve at night, the sight distance is limited by the higher grade in front of the vehicle. This distance must be long ... more

Sag curve length when S>L (Vertical curves for highway design)

When a driver is driving on a sag curve at night, the sight distance is limited by the higher grade in front of the vehicle. This distance must be long ... more

Specific gravity of solids

Silts, sands and gravels are classified by their size, and hence they may consist of a variety of minerals. Owing to the stability of quartz compared to ... more

Colpitts oscillator (frequency)

Colpitts oscillator is an oscillator that uses an LC circuit (also called a resonant circuit, tank circuit, or tuned circuit) combined with a transistor ... more

Inclusive Graphic Standard Deviation

Is the measure of sorting or variation of a particle size distribution in phi scale; can be estimated from the percentages of the particles which ... more

Sound Pressure Level

Sound pressure or acoustic pressure is the local pressure deviation from the ambient (average, or equilibrium) atmospheric pressure, caused by a sound ... more

...can't find what you're looking for?

Create a new formula