'

Search results

Found 913 matches
Porosity

The volume of the voids of a soil over the total volume of the sample defines the porosity of a soil. Used in geology, hydrogeology, soil science, and ... more

Dry bulk density of soil

Bulk density is a property of powders, granules, and other “divided” solids, especially used in reference to mineral components (soil, gravel), chemical ... more

Wet bulk density of soil (total bulk density)

Bulk density is a property of powders, granules, and other “divided” solids, especially used in reference to mineral components (soil, gravel), ... more

Effective diffusivity in porous media

A porous medium (or a porous material) is a material containing pores (voids). The skeletal portion of the material is often called the ... more

Density

The density of a material is defined as its mass per unit volume. For a pure substance the density has the same numerical value as its mass concentration. ... more

Worksheet 296

(a) Calculate the buoyant force on 10,000 metric tons (1.00×10 7 kg) of solid steel completely submerged in water, and compare this with the steel’s weight.

(b) What is the maximum buoyant force that water could exert on this same steel if it were shaped into a boat that could displace 1.00×10 5 m 3 of water?

Strategy for (a)

To find the buoyant force, we must find the weight of water displaced. We can do this by using the densities of water and steel given in Table [insert table #] We note that, since the steel is completely submerged, its volume and the water’s volume are the same. Once we know the volume of water, we can find its mass and weight

First, we use the definition of density to find the steel’s volume, and then we substitute values for mass and density. This gives :

Density

Because the steel is completely submerged, this is also the volume of water displaced, Vw. We can now find the mass of water displaced from the relationship between its volume and density, both of which are known. This gives:

Density

By Archimedes’ principle, the weight of water displaced is m w g , so the buoyant force is:

Force (Newton's second law)

The steel’s weight is 9.80×10 7 N , which is much greater than the buoyant force, so the steel will remain submerged.

Strategy for (b)

Here we are given the maximum volume of water the steel boat can displace. The buoyant force is the weight of this volume of water.

The mass of water displaced is found from its relationship to density and volume, both of which are known. That is:

Density

The maximum buoyant force is the weight of this much water, or

Force (Newton's second law)

Discussion

The maximum buoyant force is ten times the weight of the steel, meaning the ship can carry a load nine times its own weight without sinking.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Relative density of soil

Silts, sands and gravels are classified by their size, and hence they may consist of a variety of minerals. Owing to the stability of quartz compared to ... more

Degree of saturation

Soil is the mixture of minerals, organic matter, gases, liquids, and the myriad of organisms that together support plant life. The ratio of the volume of ... more

Time to reach specific temperature (related to Biot and Fourier numbers)

The Biot number (Bi) is a dimensionless quantity used in heat transfer calculations. Gives a simple index of the ratio of the heat transfer resistances ... more

Kozeny-Carman equation

The Kozeny–Carman equation (or Carman-Kozeny equation) is a relation used in the field of fluid dynamics to calculate the pressure drop of a fluid flowing ... more

Direct mesurement of the Volumetric Water content

Water content or moisture content is the quantity of water contained in a material, such as soil (called soil moisture), rock, ceramics, fruit, or wood. ... more

Moist unit weight

In fluid mechanics, specific weight represents the force exerted by gravity on a unit volume of a fluid. Specific weight can be used as a characteristic ... more

Saturated unit weight

In fluid mechanics, specific weight represents the force exerted by gravity on a unit volume of a fluid. Specific weight can be used as a characteristic ... more

Dry unit weight

n fluid mechanics, specific weight represents the force exerted by gravity on a unit volume of a fluid. Specific weight can be used as a characteristic ... more

Specific absorption rate - with Electric intensity

Specific absorption rate (SAR) is a measure of the rate at which energy is absorbed by the human body when exposed to a radio ... more

P-wave Velocity

P-waves are a type of elastic wave, called seismic waves in seismology, that can travel through a continuum. The continuum is made up of gases (as sound ... more

Dupuit-Forchheimer relationship

The pore or interstitial velocity v_px given by the Dupuit-Forchheimer relationship is the average velocity of fluid molecules in the pores; it is related ... more

Bulk Modulus - volume

The bulk modulus ( or ) of a substance measures the substance’s resistance to uniform compression. It is defined as the ratio of the infinitesimal ... more

Speed of Sound in Fluids (Newton-Laplace equation )

The speed of sound is the distance travelled per unit of time by a sound wave propagating through an elastic medium.
Sound travels faster in liquids ... more

Archie's Law

In petrophysics, Archie’s law relates the in-situ electrical conductivity of a sedimentary rock to its porosity and brine saturation as shown ... more

Speed of sound in three-dimensional solids (shear waves)

The speed of sound is the distance travelled per unit of time by a sound wave propagating through an elastic medium. Sound travels faster in liquids and ... more

Water hammer (wave speed)

Water hammer (or, more generally, fluid hammer) is a pressure surge or wave caused when a fluid (usually a liquid but sometimes also a gas) in motion is ... more

Speed of sound in three-dimensional solids (pressure waves)

The speed of sound is the distance travelled per unit of time by a sound wave propagating through an elastic medium. Sound travels faster in liquids and ... more

Specific absorption rate - with Current density

Specific absorption rate (SAR) is a measure of the rate at which energy is absorbed by the human body when exposed to a radio ... more

Low-density lipoprotein - Estimation of LDL particles via cholesterol content - in mmol/l

Low-density lipoprotein (LDL) is one of the five major groups of lipoproteins. These groups, from least dense to most dense, are: ... more

Low-density lipoprotein - Estimation of LDL particles via cholesterol content - in mg/dl

Low-density lipoprotein (LDL) is one of the five major groups of lipoproteins. These groups, from least dense to most dense, are: ... more

Specific absorption rate (SAR)

Specific absorption rate calculates the rate at which energy is absorbed by the body when exposed to a radio frequency (RF) electromagnetic field. Specific ... more

Probability density function of a log-normal distribution

In probability theory, a probability distribution assigns a probability to each measurable subset of the possible outcomes of a random experiment, survey, ... more

Submerged unit weight

In fluid mechanics, specific weight ( or unit weight ) represents the force exerted by gravity on a unit volume of a fluid. Specific weight can be used as ... more

Linear mass density

Linear density is the measure of a quantity of any characteristic value per unit of length. Linear mass density (titer in textile engineering, the amount ... more

...can't find what you're looking for?

Create a new formula