'

Search results

Found 894 matches
Worksheet 333

A typical small rescue helicopter, like the one in the Figure below, has four blades, each is 4.00 m long and has a mass of 50.0 kg. The blades can be approximated as thin rods that rotate about one end of an axis perpendicular to their length. The helicopter has a total loaded mass of 1000 kg. (a) Calculate the rotational kinetic energy in the blades when they rotate at 300 rpm. (b) Calculate the translational kinetic energy of the helicopter when it flies at 20.0 m/s, and compare it with the rotational energy in the blades. (c) To what height could the helicopter be raised if all of the rotational kinetic energy could be used to lift it?


The first image shows how helicopters store large amounts of rotational kinetic energy in their blades. This energy must be put into the blades before takeoff and maintained until the end of the flight. The engines do not have enough power to simultaneously provide lift and put significant rotational energy into the blades.
The second image shows a helicopter from the Auckland Westpac Rescue Helicopter Service. Over 50,000 lives have been saved since its operations beginning in 1973. Here, a water rescue operation is shown. (credit: 111 Emergency, Flickr)

Strategy

Rotational and translational kinetic energies can be calculated from their definitions. The last part of the problem relates to the idea that energy can change form, in this case from rotational kinetic energy to gravitational potential energy.

Solution for (a)

We must convert the angular velocity to radians per second and calculate the moment of inertia before we can find Er . The angular velocity ω for 1 r.p.m is

Angular velocity

and for 300 r.p.m

Multiplication

The moment of inertia of one blade will be that of a thin rod rotated about its end.

Moment of Inertia - Rod end

The total I is four times this moment of inertia, because there are four blades. Thus,

Multiplication

and so The rotational kinetic energy is

Rotational energy

Solution for (b)

Translational kinetic energy is defined as

Kinetic energy ( related to the object 's velocity )

To compare kinetic energies, we take the ratio of translational kinetic energy to rotational kinetic energy. This ratio is

Division

Solution for (c)

At the maximum height, all rotational kinetic energy will have been converted to gravitational energy. To find this height, we equate those two energies:

Potential energy

Discussion

The ratio of translational energy to rotational kinetic energy is only 0.380. This ratio tells us that most of the kinetic energy of the helicopter is in its spinning blades—something you probably would not suspect. The 53.7 m height to which the helicopter could be raised with the rotational kinetic energy is also impressive, again emphasizing the amount of rotational kinetic energy in the blades.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Power - rotational systems (torque)

Power is the rate at which work is done. It is equivalent to an amount of energy consumed per unit time. Power in mechanical systems is the combination of ... more

Wind turbine angular velocity

The formula for the calculation of the angular velocity of a wind turbine rotor. The definition is according to the IEC 61400-2. ... more

3rd Equation of Motion for Rotation - Final Angle : acceleration independent

In mathematical physics, equations of motion are equations that describe the behaviour of a physical system in terms of its motion as a function of ... more

1st Equation of Motion for Rotation - Angular Velocity

In mathematical physics, equations of motion are equations that describe the behaviour of a physical system in terms of its motion as a function of ... more

2nd Equation of Motion for Rotation - Final Angle

In mathematical physics, equations of motion are equations that describe the behaviour of a physical system in terms of its motion as a function of ... more

Angular Acceleration

Torque, moment, or moment of force is the tendency of a force to rotate an object about an axis, fulcrum, or pivot.
Moment of inertia is the mass ... more

Velocity of a simple harmonic motion

A simple harmonic motion is a type of periodic motion where the restoring force is directly proportional to the displacement. The motion is sinusoidal in ... more

Wavelength of sound waves

In the case of longitudinal harmonic sound waves, the wavelength can be calculated by the distance the point has traveled from the wave’s source, the ... more

Acceleration of a simple harmonic motion

A simple harmonic motion is a type of periodic motion where the restoring force is directly proportional to the displacement. The motion is sinusoidal in ... more

4th Equation of Motion for Rotation - Angular Velocity : time independent

In mathematical physics, equations of motion are equations that describe the behaviour of a physical system in terms of its motion as a function of ... more

Specific Relative Angular Momentum - Elliptical orbit

In celestial mechanics, the specific relative angular momentum (h) of two orbiting bodies is the vector product of the relative position and the relative ... more

Angular Velocity - related to linear velocity

In physics, the angular velocity is defined as the rate of change of angular displacement and is a vector quantity (more precisely, a pseudovector) which ... more

Uniform Circular Motion position (Y - coordinate)

In physics, circular motion is a movement of an object along the circumference of a circle or rotation along a circular path. It can be uniform, with ... more

Uniform Circular Motion position (X - coordinate)

In physics, circular motion is a movement of an object along the circumference of a circle or rotation along a circular path. It can be uniform, with ... more

Epicyclic gearing (overal gear ratio)

An epicyclic gear train consists of two gears mounted so that the center of one gear revolves around the center of the other. A carrier connects the ... more

Simple gear train with two gears (gear ratio in terms of angular velocities and number of teeth)

The gear ratio of a gear train, also known as its speed ratio, is the ratio of the angular velocity of the input gear to the angular velocity of the output ... more

Angular Frequency

In physics, angular frequency ω (also referred to by the terms angular speed, radial frequency, circular frequency, orbital frequency, radian frequency, ... more

Angular Momentum

In physics, angular momentum, moment of momentum, or rotational momentum is a measure of the amount of rotation an object has, taking into account its ... more

Refarctive index (absence of attenuation in vacuum)

When an electromagnetic wave travels through a medium in which it gets attenuated (this is called an “opaque” or “attenuating” ... more

Sagnac effect (phase difference)

The Sagnac effect, also called Sagnac interference, named after French physicist Georges Sagnac, is a phenomenon encountered in interferometry that is ... more

Rotational energy

The rotational energy or angular kinetic energy is the kinetic energy due to the rotation of an object and is part of its total kinetic energy. The ... more

Mechanical output power

The mechanical output power of the electric motor calculated by the output torque and angular velocity

... more

Precession - (Torque-induced - Classical Newtonian)

Precession is a change in the orientation of the rotational axis of a rotating body. In an appropriate reference frame it can be defined as a change in the ... more

Laser rangefinder - distance realtive to phase delay and angular frequency

A laser rangefinder is a rangefinder that uses a laser beam to determine the distance to an object. The most common form of laser rangefinder operates on ... more

Sagnac Effect - TIme Difference

The Sagnac effect (also called Sagnac interference), named after French physicist Georges Sagnac, is a phenomenon encountered in interferometry that is ... more

Sommerfeld Number - alternative using angular velocity

In the design of fluid bearings, the Sommerfeld number (S), or bearing characteristic number, is a dimensionless quantity used extensively in hydrodynamic ... more

Angular frequency (De Broglie dispersion relation in nonrelativistic limit)

Elementary particles, atomic nuclei, atoms, and even molecules behave in some contexts as matter waves. According to the de Broglie, angular frequency and ... more

Radial acceleration in circular motion

Uniform circular motion, that is constant speed along a circular path, is an example of a body experiencing acceleration resulting in velocity of a ... more

Mean angular motion - function of gravitational parameter

In orbital mechanics, mean motion (represented by n) is the angular speed required for a body to complete one orbit, assuming constant speed in a circular ... more

...can't find what you're looking for?

Create a new formula