'

Search results

Found 553 matches
True anomaly - circular orbit

In celestial mechanics, true anomaly is an angular parameter that defines the position of a body moving along a Keplerian orbit. It is the angle between ... more

True anomaly - elliptic orbits

In celestial mechanics, true anomaly is an angular parameter that defines the position of a body moving along a Keplerian orbit. It is the angle between ... more

Mean anomaly - function of mean longitude

In celestial mechanics, the mean anomaly is an angle used in calculating the position of a body in an elliptical orbit in the classical two-body problem. ... more

Radius from true anomaly

In celestial mechanics, true anomaly is an angular parameter that defines the position of a body moving along a Keplerian orbit. It is the angle between ... more

True anomaly - as a function of eccentric anomaly, sin form

In celestial mechanics, true anomaly is an angular parameter that defines the position of a body moving along a Keplerian orbit. It is the angle between ... more

True anomaly - as a function of eccentric anomaly, Tan form

In celestial mechanics, true anomaly is an angular parameter that defines the position of a body moving along a Keplerian orbit. It is the angle between ... more

True anomaly - as a function of eccentric anomaly, cos form

In celestial mechanics, true anomaly is an angular parameter that defines the position of a body moving along a Keplerian orbit. It is the angle between ... more

Kepler's equation - X coordinate

In orbital mechanics, Kepler’s equation relates various geometric properties of the orbit of a body subject to a central force.

It was first ... more

Heliocentric distance

In astronomy, Kepler’s laws of planetary motion are three scientific laws describing the motion of planets around the Sun.

1- The orbit of ... more

Kepler's equation - y coordinate

In orbital mechanics, Kepler’s equation relates various geometric properties of the orbit of a body subject to a central force.

It was first ... more

Orbit Equation

In astrodynamics an orbit equation defines the path of orbiting body around central body relative to , without specifying position as a function of time. ... more

Mean anomaly at epoch

In celestial mechanics, the mean anomaly is an angle used in calculating the position of a body in an elliptical orbit in the classical two-body problem. ... more

Mean anomaly

In celestial mechanics, the mean anomaly is an angle used in calculating the position of a body in an elliptical orbit in the classical two-body problem. ... more

Mean anomaly - function of gravitational parameter

In celestial mechanics, the mean anomaly is an angle used in calculating the position of a body in an elliptical orbit in the classical two-body problem. ... more

True anomaly

In astronomy, Kepler’s laws of planetary motion are three scientific laws describing the motion of planets around the Sun.

1- The orbit of ... more

Kepler's equation

In orbital mechanics, Kepler’s equation relates various geometric properties of the orbit of a body subject to a central force.

It was first ... more

Hyperbolic Kepler equation

In orbital mechanics, Kepler’s equation relates various geometric properties of the orbit of a body subject to a central force.

It was first ... more

Near branch of a hyperbola in polar coordinates with respect to a focal point

In mathematics, a hyperbola is a type of smooth curve, lying in a plane, defined by its geometric properties or by equations for which it is the solution ... more

Mean angular motion

In orbital mechanics, mean motion (represented by n) is the angular speed required for a body to complete one orbit, assuming constant speed in a circular ... more

Mean angular motion - function of gravitational parameter

In orbital mechanics, mean motion (represented by n) is the angular speed required for a body to complete one orbit, assuming constant speed in a circular ... more

Beta Angle

The beta angle is a measurement that is used most notably in spaceflight. The beta angle determines the percentage of time an object such as a spacecraft ... more

Nodal Precession

Nodal precession is the precession of an orbital plane around the rotation axis of an astronomical body such as Earth. This precession is due to the ... more

Auger electron spectroscopy - The Auger yield

Auger electron spectroscopy is a common analytical technique used specifically in the study of surfaces and, more generally, in the area of materials ... more

Auger electron spectroscopy - The Auger yield (relative to the transition probability)

Auger electron spectroscopy is a common analytical technique used specifically in the study of surfaces and, more generally, in the area of materials ... more

Specific Relative Angular Momentum - Elliptical orbit

In celestial mechanics, the specific relative angular momentum (h) of two orbiting bodies is the vector product of the relative position and the relative ... more

Mean Orbital Speed

The orbital speed of a body, generally a planet, a natural satellite, an artificial satellite, or a multiple star, is the speed at which it orbits around ... more

Flight path angle (elliptic orbit)

In astrodynamics an elliptic orbit is a Kepler orbit with the eccentricity less than 1; this includes the special case of a circular orbit, with ... more

Declination of the Sun

The position of the Sun in the sky is a function of both time and the geographic coordinates of the observer on the surface of the Earth. As the Earth ... more

Declination of the Sun (simplified)

The position of the Sun in the sky is a function of both time and the geographic coordinates of the observer on the surface of the Earth. As the Earth ... more

Gravity gradiant

Gravity gradiometry is the study and measurement of variations in the acceleration due to gravity. The gravity gradient is the spatial rate of change of ... more

...can't find what you're looking for?

Create a new formula