'

Search results

Found 1432 matches
Churchill–Bernstein Equation

The equation yields the surface averaged Nusselt number, which is used to determine the average convective heat transfer coefficient. Newton’s law of ... more

Isentropic Relations for an Ideal Gas - difference entropy relative to the volume

In thermodynamics, an isentropic process is an idealized thermodynamic process that is adiabatic and in which the work transfers of the system are ... more

Isentropic Relations for an Ideal Gas - difference entropy relative to the pressure

In thermodynamics, an isentropic process is an idealized thermodynamic process that is adiabatic and in which the work transfers of the system are ... more

Coefficient Of Performance for a perfectly reversible cooler

Pulse tube cryocooler(or refrigerator) can be made without moving parts in the low temperature part of the device, making the cooler suitable for a wide ... more

Isentropic Relations for an Ideal Gas - Pressure and volume

In thermodynamics, an isentropic process is an idealized thermodynamic process that is adiabatic and in which the work transfers of the system are ... more

Coefficient Of Performance for a non perfectly reversible cooler

Pulse tube cryocooler(or refrigerator) can be made without moving parts in the low temperature part of the device, making the cooler suitable for a wide ... more

Thermal Expansion - Linear

Thermal expansion is the tendency of matter to change in volume in response to a change in temperature through heat transfer. When a substance is heated, ... more

R-value (insulation) of a multi-layered installation

Formula first contributed by:
zfyl

The R-value is a measure of thermal resistance, or ability of heat to transfer from hot ... more

Area thermal expansion coefficient

Thermal expansion is the tendency of matter to change in length, area or volume in response to a change in temperature, through heat transfer.
The ... more

Entropy of isobaric process

An isobaric process is a thermodynamic process in which the pressure stays constant: ΔP = 0. The heat transferred to the system does work, but also changes ... more

...can't find what you're looking for?

Create a new formula