'

Search results

Found 1956 matches
Prandtl–Meyer expansion fan - turn angle

A supersonic expansion fan, technically known as Prandtl–Meyer expansion fan, is a centred expansion process that occurs when a supersonic flow turns ... more

Prandtl–Meyer expansion fan - Prandtl–Meyer function

A supersonic expansion fan, technically known as Prandtl–Meyer expansion fan, is a centred expansion process that occurs when a supersonic flow turns ... more

Prandtl–Meyer expansion fan - final flow density

A supersonic expansion fan, technically known as Prandtl–Meyer expansion fan, is a centred expansion process that occurs when a supersonic flow turns ... more

Prandtl–Meyer expansion fan - final flow tempreture

A supersonic expansion fan, technically known as Prandtl–Meyer expansion fan, is a centred expansion process that occurs when a supersonic flow turns ... more

Prandtl–Meyer expansion fan - final flow pressure

A supersonic expansion fan, technically known as Prandtl–Meyer expansion fan, is a centred expansion process that occurs when a supersonic flow turns ... more

Prandtl–Meyer function

This entry marks fxSolver’s 2000th equation milestone and is a kind contribution by Reddit user ... more

Prandtl–Meyer expansion fan - first Mach line angle

A supersonic expansion fan, technically known as Prandtl–Meyer expansion fan, is a centred expansion process that occurs when a supersonic flow turns ... more

Prandtl–Meyer expansion fan - last Mach line angle

A supersonic expansion fan, technically known as Prandtl–Meyer expansion fan, is a centred expansion process that occurs when a supersonic flow turns ... more

Oblique Shock

An oblique shock wave, unlike a normal shock, is inclined with respect to the incident upstream flow direction. It will occur when a supersonic flow ... more

Mach wave (angle)

In fluid dynamics, a Mach wave is a pressure wave traveling with the speed of sound caused by a slight change of pressure added to a compressible flow. ... more

Shock Diamond - distance from the nozzle

Shock diamonds (also known as Mach diamonds, Mach disks, Mach rings, doughnut tails or thrust diamonds) are a formation of standing wave patterns that ... more

Mach Number (subsonic, calculated from Pitot Tube Pressure)

In fluid mechanics, Mach number (M or Ma) is a dimensionless quantity representing the ratio of speed of an object moving through a fluid and the local ... more

Mach Number (supersonic, calculated from Pitot Tube Pressure)

In fluid mechanics, Mach number (M or Ma) is a dimensionless quantity representing the ratio of speed of an object moving through a fluid and the local ... more

Dynamic Pressure - Compressible flow

In incompressible fluid dynamics dynamic pressure (indicated with q, or Q, and sometimes called velocity pressure) is the quantity defined as ... more

Sears–Haack body (volume)

The Sears–Haack body is the shape with the lowest theoretical wave drag in supersonic flow, for a given body length and given volume. The mathematical ... more

Sears–Haack body (Drag Coefficient related to the Volume)

The Sears–Haack body is the shape with the lowest theoretical wave drag in supersonic flow, for a given body length and given volume. The mathematical ... more

Sears–Haack body (Drag Coefficient related to the maximum Radius)

The Sears–Haack body is the shape with the lowest theoretical wave drag in supersonic flow, for a given body length and given volume. The mathematical ... more

Sears–Haack body (Wave Drag related to the Volume)

The Sears–Haack body is the shape with the lowest theoretical wave drag in supersonic flow, for a given body length and given volume. The mathematical ... more

Sears–Haack body (Wave Drag related to the maximum Radius)

The Sears–Haack body is the shape with the lowest theoretical wave drag in supersonic flow, for a given body length and given volume. The mathematical ... more

Impact Pressure - isentropic flow (ratio of specific heats =1.4)

In compressible fluid dynamics, impact pressure (dynamic pressure) is the difference between total pressure (also known as pitot pressure or stagnation ... more

Radius of a Sears–Haack Body

The Sears–Haack body is the shape with the lowest theoretical wave drag in supersonic flow, for a given body length and given volume. The mathematical ... more

Rayleigh Number

In fluid mechanics, the Rayleigh number (Ra) for a fluid is a dimensionless number associated with buoyancy driven flow (also known as free convection or ... more

Rayleigh number (for a uniform wall heating flux)

In fluid mechanics, the Rayleigh number (Ra) for a fluid is a dimensionless number associated with buoyancy-driven flow, also known as free convection or ... more

Sears–Haack body (cross sectional area)

The Sears–Haack body is the shape with the lowest theoretical wave drag in supersonic flow, for a given body length and given volume.The mathematical ... more

Rayleigh number (for geophysical applications)

In fluid mechanics, the Rayleigh number (Ra) for a fluid is a dimensionless number associated with buoyancy-driven flow, also known as free convection or ... more

Rayleigh number (for geophysical applications - related to bottom heating of the mantle from the core)

In fluid mechanics, the Rayleigh number (Ra) for a fluid is a dimensionless number associated with buoyancy-driven flow, also known as free convection or ... more

Dittus-Boelter equation - Nusselt number

In heat transfer at a boundary (surface) within a fluid, the Nusselt number (Nu) is the ratio of convective to conductive heat transfer across (normal to) ... more

Impact Pressure - isentropic flow

In compressible fluid dynamics, impact pressure (dynamic pressure) is the difference between total pressure (also known as pitot pressure or stagnation ... more

Wing loading - turning radius

In aerodynamics, wing loading is the total weight of an aircraft divided by the area of its wing. The stalling speed of an aircraft in straight, level ... more

Borda–Carnot equation

In fluid dynamics the Borda–Carnot equation is an empirical description of the mechanical energy losses of the fluid due to a (sudden) flow expansion. The ... more

...can't find what you're looking for?

Create a new formula