'

Search results

Found 1482 matches
Prandtl–Meyer expansion fan - final flow density

A supersonic expansion fan, technically known as Prandtl–Meyer expansion fan, is a centred expansion process that occurs when a supersonic flow turns ... more

Prandtl–Meyer expansion fan - final flow tempreture

A supersonic expansion fan, technically known as Prandtl–Meyer expansion fan, is a centred expansion process that occurs when a supersonic flow turns ... more

Prandtl–Meyer expansion fan - turn angle

A supersonic expansion fan, technically known as Prandtl–Meyer expansion fan, is a centred expansion process that occurs when a supersonic flow turns ... more

Prandtl–Meyer expansion fan - Prandtl–Meyer function

A supersonic expansion fan, technically known as Prandtl–Meyer expansion fan, is a centred expansion process that occurs when a supersonic flow turns ... more

Prandtl–Meyer expansion fan - Maximum turn angle

A supersonic expansion fan, technically known as Prandtl–Meyer expansion fan, is a centred expansion process that occurs when a supersonic flow turns ... more

Prandtl–Meyer function

This entry marks fxSolver’s 2000th equation milestone and is a kind contribution by Reddit user ... more

Prandtl–Meyer expansion fan - last Mach line angle

A supersonic expansion fan, technically known as Prandtl–Meyer expansion fan, is a centred expansion process that occurs when a supersonic flow turns ... more

Prandtl–Meyer expansion fan - first Mach line angle

A supersonic expansion fan, technically known as Prandtl–Meyer expansion fan, is a centred expansion process that occurs when a supersonic flow turns ... more

Oblique Shock

An oblique shock wave, unlike a normal shock, is inclined with respect to the incident upstream flow direction. It will occur when a supersonic flow ... more

Dynamic Pressure - Compressible flow

In incompressible fluid dynamics dynamic pressure (indicated with q, or Q, and sometimes called velocity pressure) is the quantity defined as ... more

Mach Number (subsonic compressible flow)

In fluid mechanics, Mach number (M or Ma) is a dimensionless quantity representing the ratio of speed of an object moving through a fluid and the local ... more

Mach Number (subsonic, calculated from Pitot Tube Pressure)

In fluid mechanics, Mach number (M or Ma) is a dimensionless quantity representing the ratio of speed of an object moving through a fluid and the local ... more

Mach Number (supersonic, calculated from Pitot Tube Pressure)

In fluid mechanics, Mach number (M or Ma) is a dimensionless quantity representing the ratio of speed of an object moving through a fluid and the local ... more

Mach wave (angle)

In fluid dynamics, a Mach wave is a pressure wave traveling with the speed of sound caused by a slight change of pressure added to a compressible flow. ... more

Total Pressure to Static Pressure Ratio - in isentropic flow

In isentropic flow the ratio of total pressure to static pressure is given as shown

... more

Shock Diamond - distance from the nozzle

Shock diamonds (also known as Mach diamonds, Mach disks, Mach rings, doughnut tails or thrust diamonds) are a formation of standing wave patterns that ... more

Impact Pressure - isentropic flow (ratio of specific heats =1.4)

In compressible fluid dynamics, impact pressure (dynamic pressure) is the difference between total pressure (also known as pitot pressure or stagnation ... more

Mach Number

In fluid mechanics, Mach number (M or Ma) is a dimensionless quantity representing the ratio of speed of an object moving through a fluid and the local ... more

de Laval nozzle - correlation of Area and Velocity

A de Laval nozzle (or convergent-divergent nozzle, CD nozzle or con-di nozzle) is a tube that is pinched in the middle, making a carefully balanced, ... more

Impact Pressure - isentropic flow

In compressible fluid dynamics, impact pressure (dynamic pressure) is the difference between total pressure (also known as pitot pressure or stagnation ... more

Entropy of isobaric process

An isobaric process is a thermodynamic process in which the pressure stays constant: ΔP = 0. The heat transferred to the system does work, but also changes ... more

Darcy's law

Describes the flow of a fluid through a porous medium, for slow, viscous flow. The total discharge, is equal to the product of the intrinsic permeability ... more

Knudsen number (Relationship to Mach and Reynolds numbers in gases)

The Knudsen number (Kn) is a dimensionless number defined as the ratio of the molecular mean free path length to a representative physical length scale. ... more

Time to reach specific temperature (related to Biot and Fourier numbers)

The Biot number (Bi) is a dimensionless quantity used in heat transfer calculations. Gives a simple index of the ratio of the heat transfer resistances ... more

Karman line (lift force)

Karman line, lies at an altitude of 100 kilometers (62 mi) above the Earth’s sea level, and commonly represents the boundary between the ... more

Speed of Sound (air, ideal gases)

The speed of sound is the distance travelled per unit time by a sound wave propagating through an elastic medium. The SI unit of the speed of sound is the ... more

Rayleigh number (for geophysical applications - related to bottom heating of the mantle from the core)

In fluid mechanics, the Rayleigh number (Ra) for a fluid is a dimensionless number associated with buoyancy-driven flow, also known as free convection or ... more

Vacuum Evacuation Time

The evacuation time for a vacuum pump can be calculated as shown

... more

Entropy of isothermal process in terms of pressure

An isothermal process is a change of a system, in which the temperature remains constant: ΔT = 0. This typically occurs when a system is in contact with an ... more

Speed of Sound (air, ideal gases) - relative to the mass of a single molecule

The speed of sound is the distance travelled per unit time by a sound wave propagating through an elastic medium. The SI unit of the speed of sound is the ... more

...can't find what you're looking for?

Create a new formula