'

Search results

Found 1431 matches
Friction Loss (laminar flow)

In fluid flow, friction loss (or skin friction) is the loss of pressure or “head” that occurs in pipe or duct flow due to the effect of the fluid’s ... more

Friction Loss (turbulent flow)

In fluid flow, friction loss (or skin friction) is the loss of pressure or “head” that occurs in pipe or duct flow due to the effect of the fluid’s ... more

Friction Loss (hydraulic slope)

In fluid flow, friction loss (or skin friction) is the loss of pressure or “head” that occurs in pipe or duct flow due to the effect of the fluid’s ... more

Darcy Weisbach equation (head loss)

In fluid dynamics, the Darcy–Weisbach equation is a phenomenological equation, which relates the head loss — or pressure loss — due to friction along a ... more

Darcy friction factor - Free surface flow

In fluid dynamics, the Darcy friction factor formulae are equations that allow the calculation of the Darcy friction factor, a dimensionless quantity used ... more

Darcy friction factor - Colebrook–White equation (relative to the radius)

In fluid dynamics, the Darcy friction factor formulae are equations that allow the calculation of the Darcy friction factor, a dimensionless quantity used ... more

Darcy friction factor

In fluid dynamics, the Darcy friction factor formulae are equations that allow the calculation of the Darcy friction factor, a dimensionless quantity used ... more

Head loss in terms of volumetric flow rate

Hydraulic head or piezometric head is a specific measurement of liquid pressure above a geodetic datum.
In any real moving fluid, energy is dissipated ... more

Available NPSH in turbine (Net Positive Suction Head)

In a hydraulic circuit, net positive suction head (NPSH) may refer to one of two quantities in the analysis of cavitation:
... more

Force due to water hammer (Slow valve closure)

Water hammer (or, more generally, fluid hammer) is a pressure surge or wave caused when a fluid (usually a liquid but sometimes also a gas) in motion is ... more

Gauckler–Manning–Strickler formula

The Manning formula is also known as the Gauckler–Manning formula, or Gauckler–Manning–Strickler formula in Europe. In the United States, in practice, it ... more

Borda–Carnot equation ( in relation to Bernoulli's principle)

Borda–Carnot equation is an empirical description of the mechanical energy losses of the fluid due to a (sudden) flow expansion. It describes how the total ... more

Manning formula

The Manning formula is also known as the Gauckler–Manning formula, or Gauckler–Manning–Strickler formula in Europe. In the United States, in practice, it ... more

Hagen-Poiseuille Equation

In fluid dynamics, the Hagen–Poiseuille equation, also known as the Hagen–Poiseuille law, Poiseuille law or Poiseuille equation, is a physical law that ... more

Borda–Carnot equation (for open channel flows)

In fluid dynamics the Borda–Carnot equation is an empirical description of the mechanical energy losses of the fluid due to a (sudden) flow expansion. The ... more

Water hammer (wave speed)

Water hammer (or, more generally, fluid hammer) is a pressure surge or wave caused when a fluid (usually a liquid but sometimes also a gas) in motion is ... more

Darcy friction factor - Swamee–Jain equation

In fluid dynamics, the Darcy friction factor formulae are equations that allow the calculation of the Darcy friction factor, a dimensionless quantity used ... more

Water hammer (pressure surge)

Water hammer (or, more generally, fluid hammer) is a pressure surge or wave caused when a fluid (usually a liquid but sometimes also a gas) in motion is ... more

Darcy friction factor - Haaland equation

In fluid dynamics, the Darcy friction factor formulae are equations that allow the calculation of the Darcy friction factor, a dimensionless quantity used ... more

Darcy friction factor - Serghides's solution (Variable A)

In fluid dynamics, the Darcy friction factor formulae are equations that allow the calculation of the Darcy friction factor, a dimensionless quantity used ... more

Darcy friction factor - Blasius correlation

In fluid dynamics, the Darcy friction factor formulae are equations that allow the calculation of the Darcy friction factor, a dimensionless quantity used ... more

Darcy friction factor - Laminar flow

In fluid dynamics, the Darcy friction factor formulae are equations that allow the calculation of the Darcy friction factor, a dimensionless quantity used ... more

Borda–Carnot equation (Sudden contraction of a pipe)

Borda–Carnot equation is an empirical description of the mechanical energy losses of the fluid due to a (sudden) flow expansion. It describes how the total ... more

Darcy friction factor - Brkić solution

In fluid dynamics, the Darcy friction factor formulae are equations that allow the calculation of the Darcy friction factor, a dimensionless quantity used ... more

Sudden expansion of a pipe (total head loss)

n fluid dynamics the Borda–Carnot equation is an empirical description of the mechanical energy losses of the fluid due to a (sudden) flow expansion. The ... more

Darcy friction factor - Goudar–Sonnad equation (Variable b)

In fluid dynamics, the Darcy friction factor formulae are equations that allow the calculation of the Darcy friction factor, a dimensionless quantity used ... more

Darcy friction factor - Blasius correlation with correction for curved or helically coiled tubes

In fluid dynamics, the Darcy friction factor formulae are equations that allow the calculation of the Darcy friction factor, a dimensionless quantity used ... more

Darcy friction factor - Serghides's solution (Variable B)

In fluid dynamics, the Darcy friction factor formulae are equations that allow the calculation of the Darcy friction factor, a dimensionless quantity used ... more

Darcy friction factor - Serghides's solution (Variable C)

In fluid dynamics, the Darcy friction factor formulae are equations that allow the calculation of the Darcy friction factor, a dimensionless quantity used ... more

Reynolds number (for a flow in a tube)

In fluid mechanics, the Reynolds number is used to help predict if flow will be laminar or turbulent. We know that flow in a very smooth tube, streamlined ... more

...can't find what you're looking for?

Create a new formula