'

Search results

Found 1377 matches
Wave shoaling height

In fluid dynamics, wave shoaling is the effect by which surface waves entering shallower water change in wave height. It is caused by the fact that the ... more

Worksheet 333

A typical small rescue helicopter, like the one in the Figure below, has four blades, each is 4.00 m long and has a mass of 50.0 kg. The blades can be approximated as thin rods that rotate about one end of an axis perpendicular to their length. The helicopter has a total loaded mass of 1000 kg. (a) Calculate the rotational kinetic energy in the blades when they rotate at 300 rpm. (b) Calculate the translational kinetic energy of the helicopter when it flies at 20.0 m/s, and compare it with the rotational energy in the blades. (c) To what height could the helicopter be raised if all of the rotational kinetic energy could be used to lift it?


The first image shows how helicopters store large amounts of rotational kinetic energy in their blades. This energy must be put into the blades before takeoff and maintained until the end of the flight. The engines do not have enough power to simultaneously provide lift and put significant rotational energy into the blades.
The second image shows a helicopter from the Auckland Westpac Rescue Helicopter Service. Over 50,000 lives have been saved since its operations beginning in 1973. Here, a water rescue operation is shown. (credit: 111 Emergency, Flickr)

Strategy

Rotational and translational kinetic energies can be calculated from their definitions. The last part of the problem relates to the idea that energy can change form, in this case from rotational kinetic energy to gravitational potential energy.

Solution for (a)

We must convert the angular velocity to radians per second and calculate the moment of inertia before we can find Er . The angular velocity ω for 1 r.p.m is

Angular velocity

and for 300 r.p.m

Multiplication

The moment of inertia of one blade will be that of a thin rod rotated about its end.

Moment of Inertia - Rod end

The total I is four times this moment of inertia, because there are four blades. Thus,

Multiplication

and so The rotational kinetic energy is

Rotational energy

Solution for (b)

Translational kinetic energy is defined as

Kinetic energy ( related to the object 's velocity )

To compare kinetic energies, we take the ratio of translational kinetic energy to rotational kinetic energy. This ratio is

Division

Solution for (c)

At the maximum height, all rotational kinetic energy will have been converted to gravitational energy. To find this height, we equate those two energies:

Potential energy

Discussion

The ratio of translational energy to rotational kinetic energy is only 0.380. This ratio tells us that most of the kinetic energy of the helicopter is in its spinning blades—something you probably would not suspect. The 53.7 m height to which the helicopter could be raised with the rotational kinetic energy is also impressive, again emphasizing the amount of rotational kinetic energy in the blades.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

True anomaly - circular orbit with zero inclination

In celestial mechanics, true anomaly is an angular parameter that defines the position of a body moving along a Keplerian orbit. It is the angle between ... more

Critical Buckling Compressive Loading of a Plate

In science, buckling is a mathematical instability that leads to a failure mode.

When a structure is subjected to compressive stress, buckling may ... more

Magnetic Reynolds number (relationship to eddy current braking)

The dimensionless magnetic Reynolds number, is also used in cases where there is no physical fluid involved.

The magnetic Reynolds number is the ... more

Seiche - Longest natural period (Merian's formula)

A seiche (/ˈseɪʃ/ SAYSH) is a standing wave in an enclosed or partially enclosed body of water. Seiches and seiche-related ... more

Critical point of a cubic function ( local maximum )

A cubic function is a function of the form f(x): ax3 + bx2 + cx + d.
The critical points of a cubic equation are those values of x where the slope of ... more

Critical point of a cubic function ( local minimum )

A cubic function is a function of the form f(x): ax3 + bx2 + cx + d.
The critical points of a cubic equation are those values of x where the slope of ... more

Seiche - Period of underwater internal waves

A seiche (/ˈseɪʃ/ SAYSH) is a standing wave in an enclosed or partially enclosed body of water. Seiches and seiche-related ... more

Critical Buckling Stress of a Column with Buckling Coefficient

Column or pillar in architecture and structural engineering is a structural element that transmits, through compression, the weight of the structure above ... more

...can't find what you're looking for?

Create a new formula

Search criteria:

Similar to formula
Category