'

Search results

Found 1905 matches
Linear charge density

Linear density is the measure of a quantity of any characteristic value per unit of length. Llinear charge density (the amount of electric charge per unit ... more

Fluid Thread Breakup - Linear Stability of Inviscid Liquids

Fluid thread breakup is the process by which a single mass of fluid breaks into several smaller fluid masses. The process is characterized by the ... more

Volume Fraction of the Fibers (Rule of mixtures)

In materials science, a general rule of mixtures is a weighted mean used to predict various properties of a composite material made up of continuous and ... more

Rule of Mixtures

In materials science, a general rule of mixtures is a weighted mean used to predict various properties of a composite material made up of continuous and ... more

Inverse Rule of Mixtures

In materials science, a general rule of mixtures is a weighted mean used to predict various properties of a composite material made up of continuous and ... more

Worksheet 300

Calculate the Reynolds number N′R for a ball with a 7.40-cm diameter thrown at 40.0 m/s.

Strategy

We can use the Reynolds number equation calculate N’R , since all values in it are either given or can be found in tables of density and viscosity.

Solution

We first find the kinematic viscosity values:

Kinematic Viscosity

Substituting values into the equation for N’R yields:

Reynolds number

Discussion

This value is sufficiently high to imply a turbulent wake. Most large objects, such as airplanes and sailboats, create significant turbulence as they move. As noted before, the Bernoulli principle gives only qualitatively-correct results in such situations.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Frequency of a string under tension (nth harmonic)

A vibration in a string is a wave. Resonance causes a vibrating string to produce a sound with constant frequency, i.e. constant pitch. If the length or ... more

Bagnold number

he Bagnold number (Ba) is the ratio of grain collision stresses to viscous fluid stresses in a granular flow with interstitial Newtonian fluid, first ... more

Sears–Haack body (Wave Drag related to the Volume)

The Sears–Haack body is the shape with the lowest theoretical wave drag in supersonic flow, for a given body length and given volume. The mathematical ... more

Sears–Haack body (Wave Drag related to the maximum Radius)

The Sears–Haack body is the shape with the lowest theoretical wave drag in supersonic flow, for a given body length and given volume. The mathematical ... more

Birch's Law

Birch’s law establishes a linear relation of the compressional wave velocity of rocks and minerals of a constant average atomic weight with density ... more

Reynolds number

In fluid mechanics, the Reynolds number (Re) is a dimensionless quantity that is used to help predict similar flow patterns in different fluid flow ... more

Energy Density of electric and magnetic fields

Energy density is the amount of energy stored in a given system or region of space per unit volume or mass, though the latter is more accurately termed ... more

Worksheet 296

(a) Calculate the buoyant force on 10,000 metric tons (1.00×10 7 kg) of solid steel completely submerged in water, and compare this with the steel’s weight.

(b) What is the maximum buoyant force that water could exert on this same steel if it were shaped into a boat that could displace 1.00×10 5 m 3 of water?

Strategy for (a)

To find the buoyant force, we must find the weight of water displaced. We can do this by using the densities of water and steel given in Table [insert table #] We note that, since the steel is completely submerged, its volume and the water’s volume are the same. Once we know the volume of water, we can find its mass and weight

First, we use the definition of density to find the steel’s volume, and then we substitute values for mass and density. This gives :

Density

Because the steel is completely submerged, this is also the volume of water displaced, Vw. We can now find the mass of water displaced from the relationship between its volume and density, both of which are known. This gives:

Density

By Archimedes’ principle, the weight of water displaced is m w g , so the buoyant force is:

Force (Newton's second law)

The steel’s weight is 9.80×10 7 N , which is much greater than the buoyant force, so the steel will remain submerged.

Strategy for (b)

Here we are given the maximum volume of water the steel boat can displace. The buoyant force is the weight of this volume of water.

The mass of water displaced is found from its relationship to density and volume, both of which are known. That is:

Density

The maximum buoyant force is the weight of this much water, or

Force (Newton's second law)

Discussion

The maximum buoyant force is ten times the weight of the steel, meaning the ship can carry a load nine times its own weight without sinking.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Ratio between two field quantities expressed in decibels

he decibel is a logarithmic unit used to express the ratio between two values of a physical quantity. The bel represents a ratio between two power ... more

Energy Density (magnetic field)

Energy density is the amount of energy stored in a given system or region of space per unit volume or mass, though the latter is more accurately termed ... more

Ballistic Coefficient - using body length

In ballistics, the ballistic coefficient (BC) of a body is a measure of its ability to overcome air resistance in flight. It is inversely proportional to ... more

Vertical Pressure variation of the Atmosphere of Earth( exponential function of height)

Vertical pressure variation is the variation in pressure as a function of elevation. The vertical variation is especially significant, as it results from ... more

Direct mesurement of the Volumetric Water content

Water content or moisture content is the quantity of water contained in a material, such as soil (called soil moisture), rock, ceramics, fruit, or wood. ... more

Indicated airspeed (IAS) - incompressible fluid

Indicated airspeed (IAS) is the airspeed read directly from the airspeed indicator (ASI) on an ... more

Griffith's criterion in Linear elastic fracture mechanics (critical stress intensity factor)

Fracture mechanics is the field of mechanics concerned with the study of the propagation of cracks in materials. It uses methods of analytical solid ... more

Moment of inertia factor

In planetary sciences, the moment of inertia factor or normalized polar moment of inertia is a dimensionless quantity that characterizes the radial ... more

Indicated airspeed (IAS) - compressible fluid

Indicated airspeed (IAS) is the airspeed read directly from the airspeed indicator (ASI) on an ... more

Mass fraction (relation between mass and molar concentration)

In chemistry, the mass concentration is defined as the mass of a constituent divided by the volume of the mixture. The mass concentration of a component ... more

Number density (Relation to Mass density)

Number density is an intensive quantity used to describe the degree of concentration of countable objects. For atoms or molecules of a well-defined ... more

Drift velocity in a current-carrying metallic ohmic conductor

The drift velocity is the average velocity that a particle, such as an electron, attains due to an electric field.

In terms of the basic ... more

Relation between Polarization density and Electric field in various materials

In classical electromagnetism, polarization density is the vector field that expresses the density of permanent or induced electric dipole moments in a ... more

Worksheet 290

Find the terminal velocity of an 85-kg skydiver falling in a spread-eagle position.

Terminal Velocity (without considering buoyancy)
Rectangle area

where Vt is the terminal velocity, m is the mass of the skydiver, g is the acceleration due to gravity, Cd is the drag coefficient, ρ is the density of the fluid through which the object is falling, and A is the projected area of the object.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

where h is skydiver height and w the width at “spread-eagle” position

Drag coefficient

Drag (sometimes called air resistance, a type of friction, or fluid resistance, another type of friction or fluid friction) refers to forces acting ... more

Moment of inertia of thick-walled cylindrical tube with open ends

Mass moment of inertia, measures the extent to which an object resists rotational acceleration about an axis, and is the rotational analogue to mass.
... more

...can't find what you're looking for?

Create a new formula