'

Search results

Found 1905 matches
Dynamic (shear) viscosity

The dynamic (shear) viscosity of a fluid expresses its resistance to shearing flows, where adjacent layers move parallel to each other with different ... more

Worksheet 306

Calculate the force the biceps muscle must exert to hold the forearm and its load as shown in the figure below, and compare this force with the weight of the forearm plus its load. You may take the data in the figure to be accurate to three significant figures.


(a) The figure shows the forearm of a person holding a book. The biceps exert a force FB to support the weight of the forearm and the book. The triceps are assumed to be relaxed. (b) Here, you can view an approximately equivalent mechanical system with the pivot at the elbow joint

Strategy

There are four forces acting on the forearm and its load (the system of interest). The magnitude of the force of the biceps is FB, that of the elbow joint is FE, that of the weights of the forearm is wa , and its load is wb. Two of these are unknown FB, so that the first condition for equilibrium cannot by itself yield FB . But if we use the second condition and choose the pivot to be at the elbow, then the torque due to FE is zero, and the only unknown becomes FB .

Solution

The torques created by the weights are clockwise relative to the pivot, while the torque created by the biceps is counterclockwise; thus, the second condition for equilibrium (net τ = 0) becomes

Force (Newton's second law)
Torque
Force (Newton's second law)
Torque

Note that sin θ = 1 for all forces, since θ = 90º for all forces. This equation can easily be solved for FB in terms of known quantities,yielding. Entering the known values gives

Mechanical equilibrium - 3=3 Torque example

which yields

Torque
Addition

Now, the combined weight of the arm and its load is known, so that the ratio of the force exerted by the biceps to the total weight is

Division

Discussion

This means that the biceps muscle is exerting a force 7.38 times the weight supported.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Heat Conduction - Energy

Heat conduction (or thermal conduction) is the transfer of internal energy by microscopic diffusion and collisions of particles or quasi-particles within a ... more

Stefan Number

Sensible heat is heat exchanged by a body or thermodynamic system that changes the temperature, and some macroscopic variables of the body, but leaves ... more

Maximum Velocity in Friction Banked Turn

A banked turn (aka. banking turn) is a turn or change of direction in which the vehicle banks or inclines, usually towards the inside of the turn. For a ... more

Chebychev–Grübler–Kutzbach criterion (single open chain)

The Chebychev–Grübler–Kutzbach criterion determines the degree of freedom of a kinematic chain, that is, a coupling of rigid bodies by means of mechanical ... more

Torque - to overcome rolling resistance

Torque, is the tendency of a force to rotate an object about an axis, fulcrum, or pivot. Just as a force is a push or a pull, a torque can be thought of as ... more

Energy – Momentum relation

In physics, the energy–momentum relation, or relativistic dispersion relation, is the relativistic equation relating any object’s rest (intrinsic) ... more

Physical Pendulum

A pendulum is a mass that is attached to a pivot, from which it can swing freely. Pendulum consisting of an actual object allowed to rotate freely around a ... more

Seiche - Period of underwater internal waves

A seiche (/ˈseɪʃ/ SAYSH) is a standing wave in an enclosed or partially enclosed body of water. Seiches and seiche-related ... more

...can't find what you're looking for?

Create a new formula