'

Search results

Found 519 matches
Thrust (with cross section area)

Thrust is a reaction force described quantitatively by Newton’s second and third laws. When a system expels or accelerates mass in one direction, the ... more

Activity coefficient

An activity coefficient is a factor used in thermodynamics to account for deviations from ideal behaviour in a mixture of chemical substances.In an ideal ... more

Specific Impulse

Specific impulse (usually abbreviated Isp) is a way to describe the efficiency of rocket and jet engines. It represents the force with respect to the ... more

Orbital Eccentricity

The orbital eccentricity of an astronomical object is a parameter that determines the amount by which its orbit around another body deviates from a perfect ... more

Worksheet 333

A typical small rescue helicopter, like the one in the Figure below, has four blades, each is 4.00 m long and has a mass of 50.0 kg. The blades can be approximated as thin rods that rotate about one end of an axis perpendicular to their length. The helicopter has a total loaded mass of 1000 kg. (a) Calculate the rotational kinetic energy in the blades when they rotate at 300 rpm. (b) Calculate the translational kinetic energy of the helicopter when it flies at 20.0 m/s, and compare it with the rotational energy in the blades. (c) To what height could the helicopter be raised if all of the rotational kinetic energy could be used to lift it?


The first image shows how helicopters store large amounts of rotational kinetic energy in their blades. This energy must be put into the blades before takeoff and maintained until the end of the flight. The engines do not have enough power to simultaneously provide lift and put significant rotational energy into the blades.
The second image shows a helicopter from the Auckland Westpac Rescue Helicopter Service. Over 50,000 lives have been saved since its operations beginning in 1973. Here, a water rescue operation is shown. (credit: 111 Emergency, Flickr)

Strategy

Rotational and translational kinetic energies can be calculated from their definitions. The last part of the problem relates to the idea that energy can change form, in this case from rotational kinetic energy to gravitational potential energy.

Solution for (a)

We must convert the angular velocity to radians per second and calculate the moment of inertia before we can find Er . The angular velocity ω for 1 r.p.m is

Angular velocity

and for 300 r.p.m

Multiplication

The moment of inertia of one blade will be that of a thin rod rotated about its end.

Moment of Inertia - Rod end

The total I is four times this moment of inertia, because there are four blades. Thus,

Multiplication

and so The rotational kinetic energy is

Rotational energy

Solution for (b)

Translational kinetic energy is defined as

Kinetic energy ( related to the object 's velocity )

To compare kinetic energies, we take the ratio of translational kinetic energy to rotational kinetic energy. This ratio is

Division

Solution for (c)

At the maximum height, all rotational kinetic energy will have been converted to gravitational energy. To find this height, we equate those two energies:

Potential energy

Discussion

The ratio of translational energy to rotational kinetic energy is only 0.380. This ratio tells us that most of the kinetic energy of the helicopter is in its spinning blades—something you probably would not suspect. The 53.7 m height to which the helicopter could be raised with the rotational kinetic energy is also impressive, again emphasizing the amount of rotational kinetic energy in the blades.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Kelvin–Helmholtz mechanism

The Kelvin–Helmholtz mechanism is an astronomical process that occurs when the surface of a star or a planet cools. The cooling causes the pressure to ... more

Linear charge density

Linear density is the measure of a quantity of any characteristic value per unit of length. Llinear charge density (the amount of electric charge per unit ... more

Bulk Modulus - volume

The bulk modulus ( or ) of a substance measures the substance’s resistance to uniform compression. It is defined as the ratio of the infinitesimal ... more

Orbital Eccentricity - gravitational force

The orbital eccentricity of an astronomical object is a parameter that determines the amount by which its orbit around another body deviates from a perfect ... more

Energy Density (magnetic field)

Energy density is the amount of energy stored in a given system or region of space per unit volume or mass, though the latter is more accurately termed ... more

...can't find what you're looking for?

Create a new formula