'

Search results

Found 1498 matches
Amdahl's Law

In computer architecture, Amdahl’s law (or Amdahl’s argument) is a formula which gives the theoretical speedup in latency of the execution of a ... more

Noise Power

Noise figure (NF) and noise factor (F) are measures of degradation of the signal-to-noise ratio (SNR), caused by components in a ... more

Αxial stiffness for an element in tension

The stiffness of a body is a measure of the resistance offered by an elastic body to deformation.
Tension describes the pulling force exerted by each ... more

Electrokinesis

Electrohydrodynamics (EHD), also known as electro-fluid-dynamics (EFD) or electrokinetics, is the study ... more

Worksheet 306

Calculate the force the biceps muscle must exert to hold the forearm and its load as shown in the figure below, and compare this force with the weight of the forearm plus its load. You may take the data in the figure to be accurate to three significant figures.


(a) The figure shows the forearm of a person holding a book. The biceps exert a force FB to support the weight of the forearm and the book. The triceps are assumed to be relaxed. (b) Here, you can view an approximately equivalent mechanical system with the pivot at the elbow joint

Strategy

There are four forces acting on the forearm and its load (the system of interest). The magnitude of the force of the biceps is FB, that of the elbow joint is FE, that of the weights of the forearm is wa , and its load is wb. Two of these are unknown FB, so that the first condition for equilibrium cannot by itself yield FB . But if we use the second condition and choose the pivot to be at the elbow, then the torque due to FE is zero, and the only unknown becomes FB .

Solution

The torques created by the weights are clockwise relative to the pivot, while the torque created by the biceps is counterclockwise; thus, the second condition for equilibrium (net τ = 0) becomes

Force (Newton's second law)
Torque
Force (Newton's second law)
Torque

Note that sin θ = 1 for all forces, since θ = 90º for all forces. This equation can easily be solved for FB in terms of known quantities,yielding. Entering the known values gives

Mechanical equilibrium - 3=3 Torque example

which yields

Torque
Addition

Now, the combined weight of the arm and its load is known, so that the ratio of the force exerted by the biceps to the total weight is

Division

Discussion

This means that the biceps muscle is exerting a force 7.38 times the weight supported.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Catenary curve

In physics and geometry, a catenary is the curve that an idealized hanging chain or cable assumes under its own weight when supported only at its ends. The ... more

Hawking Radiation - Temperature of a black body (or a black hole)

A black body is an idealized physical body that absorbs all incident electromagnetic radiation, regardless of frequency or angle of incidence. A black hole ... more

Specific absorption rate - with Electric intensity

Specific absorption rate (SAR) is a measure of the rate at which energy is absorbed by the human body when exposed to a radio ... more

First Townsend ionization coefficient

The Townsend discharge is a gas ionization process where free electrons, accelerated by a sufficiently strong electric field, give rise to electrical ... more

Probability that an electron hits an ion at ionization process

Ionization is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons to form ions. If an electron ... more

...can't find what you're looking for?

Create a new formula