# Search results

The Magnus effect is the commonly observed effect in which a spinning ball (or cylinder) curves away from its principal flight path.The overall behaviour ... more

Right triangle or right-angled triangle is a triangle in which one angle is a right angle (that is, a 90-degree angle). The incircle or inscribed circle ... more

In mathematical physics, equations of motion are equations that describe the behaviour of a physical system in terms of its motion as a function of ... more

In physics, the gyromagnetic ratio (also sometimes known as the magnetogyric ratio in other disciplines) of a particle or system is the ratio of its ... more

Surface feet per minute (SFPM or SFM) is the combination of a physical quantity (surface speed) and an ... more

Surface feet per minute (SFPM or SFM) is the combination of a physical quantity (surface speed) and an ... more

In aerospace engineering, mass ratio is a measure of the efficiency of a rocket. It describes how much more massive the vehicle is with propellant than ... more

The allowable radius for a horizontal curve can then be determined by knowing the intended design velocity, the coefficient of friction, and the allowed ... more

A ball screw is a mechanical linear actuator that translates rotational motion to linear motion with little friction. A threaded shaft provides a helical ... more

**(a)** The figure shows the forearm of a person holding a book. The biceps exert a force **F _{B}** to support the weight of the forearm and the book. The triceps are assumed to be relaxed.

**(b)**Here, you can view an approximately equivalent mechanical system with the pivot at the elbow joint

Strategy

There are four forces acting on the forearm and its load (the system of interest). The magnitude of the force of the biceps is **F _{B}**, that of the elbow joint is

**F**, that of the weights of the forearm is

_{E}**w**, and its load is

_{a}**w**. Two of these are unknown

_{b}**F**, so that the first condition for equilibrium cannot by itself yield

_{B}**F**. But if we use the second condition and choose the pivot to be at the elbow, then the torque due to

_{B}**F**is zero, and the only unknown becomes

_{E}**F**.

_{B}Solution

The torques created by the weights are clockwise relative to the pivot, while the torque created by the biceps is counterclockwise; thus, the second condition for equilibrium (net **τ = 0**) becomes

Note that **sin θ = 1** for all forces, since **θ = 90º** for all forces. This equation can easily be solved for **F _{B}** in terms of known quantities,yielding. Entering the known values gives

which yields

Now, the combined weight of the arm and its load is known, so that the ratio of the force exerted by the biceps to the total weight is

Discussion

This means that the biceps muscle is exerting a force **7.38** times the weight supported.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.

http://openstaxcollege.org/textbooks/college-physics

Creative Commons License : http://creativecommons.org/licenses/by/3.0/

...can't find what you're looking for?

Create a new formula
Calculate the force the biceps muscle must exert to hold the forearm and its load as shown in the figure below, and compare this force with the weight of the forearm plus its load. You may take the data in the figure to be accurate to three significant figures.