'

Search results

Found 385 matches
Working Load Limit

Safe Working Load (SWL) sometimes stated as the Normal Working Load (NWL) is the maximum safe force ... more

Low-density lipoprotein - Estimation of LDL particles via cholesterol content - in mmol/l

Low-density lipoprotein (LDL) is one of the five major groups of lipoproteins. These groups, from least dense to most dense, are: ... more

Low-density lipoprotein - Estimation of LDL particles via cholesterol content - in mg/dl

Low-density lipoprotein (LDL) is one of the five major groups of lipoproteins. These groups, from least dense to most dense, are: ... more

Future value for Gradient payment

Future value is the value of an asset at a specific date. It measures the nominal future sum of money that a given sum of money is “worth” at a ... more

Energy–Maneuverability Theory (aircraft performance)

Energy–maneuverability theory is a model of aircraft performance. It was developed by Col. John Boyd, and is useful in describing an aircraft’s ... more

Worksheet 296

(a) Calculate the buoyant force on 10,000 metric tons (1.00×10 7 kg) of solid steel completely submerged in water, and compare this with the steel’s weight.

(b) What is the maximum buoyant force that water could exert on this same steel if it were shaped into a boat that could displace 1.00×10 5 m 3 of water?

Strategy for (a)

To find the buoyant force, we must find the weight of water displaced. We can do this by using the densities of water and steel given in Table [insert table #] We note that, since the steel is completely submerged, its volume and the water’s volume are the same. Once we know the volume of water, we can find its mass and weight

First, we use the definition of density to find the steel’s volume, and then we substitute values for mass and density. This gives :

Density

Because the steel is completely submerged, this is also the volume of water displaced, Vw. We can now find the mass of water displaced from the relationship between its volume and density, both of which are known. This gives:

Density

By Archimedes’ principle, the weight of water displaced is m w g , so the buoyant force is:

Force (Newton's second law)

The steel’s weight is 9.80×10 7 N , which is much greater than the buoyant force, so the steel will remain submerged.

Strategy for (b)

Here we are given the maximum volume of water the steel boat can displace. The buoyant force is the weight of this volume of water.

The mass of water displaced is found from its relationship to density and volume, both of which are known. That is:

Density

The maximum buoyant force is the weight of this much water, or

Force (Newton's second law)

Discussion

The maximum buoyant force is ten times the weight of the steel, meaning the ship can carry a load nine times its own weight without sinking.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Earth Similarity Index

The Earth Similarity Index, ESI or “easy scale” is a measure of how physically similar a planetary-mass object is to ... more

Wind Chill - original model

Wind-chill or windchill, (popularly wind chill factor) is the perceived decrease in air temperature felt by the body on exposed skin due to the flow of ... more

Weight transfer ( or load transfer)

In the automobile industry, weight transfer customarily refers to the change in load borne by different wheels during acceleration and the change in ... more

Wind Chill - North American and UK - Fahrenheit scale

Wind-chill or windchill, (popularly wind chill factor) is the perceived decrease in air temperature felt by the body on exposed skin due to the flow of ... more

...can't find what you're looking for?

Create a new formula