'

Search results

Found 898 matches
Worksheet 316

Calculate the change in length of the upper leg bone (the femur) when a 70.0 kg man supports 62.0 kg of his mass on it, assuming the bone to be equivalent to a uniform rod that is 45.0 cm long and 2.00 cm in radius.

Strategy

The force is equal to the weight supported:

Force (Newton's second law)

and the cross-sectional area of the upper leg bone(femur) is:

Disk area

To find the change in length we use the Young’s modulus formula. The Young’s modulus reference value for a bone under compression is known to be 9×109 N/m2. Now,all quantities except ΔL are known. Thus:

Young's Modulus

Discussion

This small change in length seems reasonable, consistent with our experience that bones are rigid. In fact, even the rather large forces encountered during strenuous physical activity do not compress or bend bones by large amounts. Although bone is rigid compared with fat or muscle, several of the substances listed in Table 5.3(see reference below) have larger values of Young’s modulus Y . In other words, they are more rigid.

Reference:
This worksheet is a modified version of Example 5.4 page 188 found in :
OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Worksheet 341

The awe‐inspiring Great Pyramid of Cheops was built more than 4500 years ago. Its square base, originally 230 m on a side, covered 13.1 acres, and it was 146 m high (H), with a mass of about 7×10^9 kg. (The pyramid’s dimensions are slightly different today due to quarrying and some sagging). Historians estimate that 20,000 workers spent 20 years to construct it, working 12-hour days, 330 days per year.

a) Calculate the gravitational potential energy stored in the pyramid, given its center of mass is at one-fourth its height.

Division
Potential energy

b) Only a fraction of the workers lifted blocks; most were involved in support services such as building ramps, bringing food and water, and hauling blocks to the site. Calculate the efficiency of the workers who did the lifting, assuming there were 1000 of them and they consumed food energy at the rate of 300 Kcal/hour.

first we calculate the number of hours worked per year.

Multiplication

then we calculate the number of hours worked in the 20 years.

Multiplication

Then we calculate the energy consumed in 20 years knowing the energy consumed per hour and the total hours worked in 20 years.

Multiplication
Multiplication

The efficiency is the resulting potential energy divided by the consumed energy.

Division
Shannon–Hartley theorem

In information theory, the Shannon–Hartley theorem tells the maximum rate at which information can be transmitted over a communications channel of a ... more

Supersonic/Hypersonic Lift-to-Drag Ratio

In aerodynamics, the lift-to-drag ratio, or L/D ratio, is the amount of lift generated by a wing or vehicle, divided by the drag it creates by moving ... more

Richardson Number - related to Reynolds number

The Richardson number (Ri) is named after Lewis Fry Richardson (1881 – 1953). It is the dimensionless number that expresses the ratio of potential to ... more

Mechanical Advantage - Law of Lever

Mechanical advantage is a measure of the force amplification achieved by using a tool, mechanical device or machine system. Ideally, the device preserves ... more

R-value (insulation)

In building and construction,the R-value is a measure of how well an object, per unit of its exposed area, resists conductive flow of heat: the greater the ... more

True anomaly

In astronomy, Kepler’s laws of planetary motion are three scientific laws describing the motion of planets around the Sun.

1- The orbit of ... more

R-value (insulation) of a multi-layered installation

Formula first contributed by:
zfyl

The R-value is a measure of thermal resistance, or ability of heat to transfer from hot ... more

Kepler's First Law

In astronomy, Kepler’s laws of planetary motion are three scientific laws describing the motion of planets around the Sun.

1.The orbit of a ... more

...can't find what you're looking for?

Create a new formula