Search results

Found 580 matches

In 1957 John Philip introduced the term sorptivity and defined it as a measure of the capacity of the medium to absorb or desorb liquid by capillarity.
... more

Hydraulic conductivity (Falling-head method)

Hydraulic conductivity is a property of vascular plants, soils and rocks, that describes the ease with which a fluid (usually water) can move through pore ... more

Worksheet 296

(a) Calculate the buoyant force on 10,000 metric tons (1.00×10 7 kg) of solid steel completely submerged in water, and compare this with the steel’s weight.

(b) What is the maximum buoyant force that water could exert on this same steel if it were shaped into a boat that could displace 1.00×10 5 m 3 of water?

Strategy for (a)

To find the buoyant force, we must find the weight of water displaced. We can do this by using the densities of water and steel given in Table [insert table #] We note that, since the steel is completely submerged, its volume and the water’s volume are the same. Once we know the volume of water, we can find its mass and weight

First, we use the definition of density to find the steel’s volume, and then we substitute values for mass and density. This gives :


Because the steel is completely submerged, this is also the volume of water displaced, Vw. We can now find the mass of water displaced from the relationship between its volume and density, both of which are known. This gives:


By Archimedes’ principle, the weight of water displaced is m w g , so the buoyant force is:

Force (Newton's second law)

The steel’s weight is 9.80×10 7 N , which is much greater than the buoyant force, so the steel will remain submerged.

Strategy for (b)

Here we are given the maximum volume of water the steel boat can displace. The buoyant force is the weight of this volume of water.

The mass of water displaced is found from its relationship to density and volume, both of which are known. That is:


The maximum buoyant force is the weight of this much water, or

Force (Newton's second law)


The maximum buoyant force is ten times the weight of the steel, meaning the ship can carry a load nine times its own weight without sinking.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Runoff equation ( P >Ia)

Surface runoff is the water flow that occurs when the soil is infiltrated to full capacity and excess water from rain. The runoff is depended on the ... more

Drainage Hooghoudt's equation

A drainage equation is an equation describing the relation between depth and spacing of parallel subsurface drains, depth of the watertable, depth and ... more

Hydraulic conductivity (as a function of water)

By definition, hydraulic conductivity is the ratio of velocity to hydraulic gradient indicating permeability of porous media.

Civil engineers ... more

Specific gravity of solids

Silts, sands and gravels are classified by their size, and hence they may consist of a variety of minerals. Owing to the stability of quartz compared to ... more

Estimated Blood Alcohol Concentration - EBAC

Blood alcohol content (BAC), also called blood alcohol concentration, blood ethanol concentration, or blood alcohol level is most ... more


The volume of the voids of a soil over the total volume of the sample defines the porosity of a soil. Used in geology, hydrogeology, soil science, and ... more

Saturated Adiabatic Lapse Rate

The lapse rate is defined as the rate at which atmospheric temperature decreases with increase in altitude. The terminology arises from the word lapse in ... more

...can't find what you're looking for?

Create a new formula