'

Search results

Found 2014 matches
Reynolds number (for a flow in a tube)

In fluid mechanics, the Reynolds number is used to help predict if flow will be laminar or turbulent. We know that flow in a very smooth tube, streamlined ... more

Reynolds number

In fluid mechanics, the Reynolds number (Re) is a dimensionless quantity that is used to help predict similar flow patterns in different fluid flow ... more

Worksheet 300

Calculate the Reynolds number N′R for a ball with a 7.40-cm diameter thrown at 40.0 m/s.

Strategy

We can use the Reynolds number equation calculate N’R , since all values in it are either given or can be found in tables of density and viscosity.

Solution

We first find the kinematic viscosity values:

Kinematic Viscosity

Substituting values into the equation for N’R yields:

Reynolds number

Discussion

This value is sufficiently high to imply a turbulent wake. Most large objects, such as airplanes and sailboats, create significant turbulence as they move. As noted before, the Bernoulli principle gives only qualitatively-correct results in such situations.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Settling velocity

The terminal velocity of a particle which is falling in the viscous fluid under its own weight due to gravity.
Generally, for small particles (laminar ... more

Stokes' law

Stokes’ law is an expression for the frictional force – also called drag force – exerted on spherical objects with very small Reynolds numbers (e.g., ... more

Terminal velocity (potato-shaped obgject)

In fluid dynamics, drag (sometimes called air resistance, a type of friction, or fluid resistance, another type of friction or fluid friction) is a force ... more

Darby-Melson equation (for Buckingham-Reiner equation)

Although an exact analytical solution of the Buckingham-Reiner equation can be obtained because it is a fourth order polynomial equation in f, due to ... more

Reynolds number - Flow in a pipe with mass flow rate

For flow in a pipe or tube, the Reynolds number is generally defined as presented here.

For shapes such as squares, rectangular or annular ducts ... more

Karman vortex street formula

In fluid dynamics, a Kármán vortex street is a repeating pattern of swirling vortices caused by the unsteady separation of flow of a fluid around blunt ... more

Drag coefficient for a spherical object in creeping flow

In fluid dynamics, the drag coefficient is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, ... more

Terminal velocity (creeping flow conditions)

The terminal velocity of a falling object is the velocity of the object when the sum of the drag force and buoyancy equals the downward force of gravity ... more

Velocity of a falling object

In fluid dynamics, drag (sometimes called air resistance, a type of friction, or fluid resistance, another type of friction or fluid friction) is a force ... more

Power (aerodynamic drag)

In fluid dynamics, drag (sometimes called air resistance, a type of friction, or fluid resistance, another type of friction or fluid friction) is a force ... more

Kozeny-Carman equation

The Kozeny–Carman equation (or Carman-Kozeny equation) is a relation used in the field of fluid dynamics to calculate the pressure drop of a fluid flowing ... more

Hagen-Poiseuille Equation

In fluid dynamics, the Hagen–Poiseuille equation, also known as the Hagen–Poiseuille law, Poiseuille law or Poiseuille equation, is a physical law that ... more

Drag coefficient

Drag (sometimes called air resistance, a type of friction, or fluid resistance, another type of friction or fluid friction) refers to forces acting ... more

Buckingham-Reiner equation (Darcy friction factor for laminar flow)

An exact description of friction loss (Darcy Weisbach equation) for Bingham plastics in fully developed laminar pipe flow was first published by ... more

Power in a reference system(aerodynamic drag)

In fluid dynamics, drag (sometimes called air resistance, a type of friction, or fluid resistance, another type of friction or fluid friction) is a force ... more

Magnetic Reynolds number (relationship to eddy current braking)

The dimensionless magnetic Reynolds number, is also used in cases where there is no physical fluid involved.

The magnetic Reynolds number is the ... more

Roshko number

In fluid mechanics, the Roshko number is a dimensionless number describing oscillating flow mechanisms.It is related to the Strouhal number and the ... more

Drag force on a rigid cylinder when velocity is perpendicular to its axis(Slender-body theory)

n fluid dynamics and electrostatics, slender-body theory is a methodology that can be used to take advantage of the slenderness of a body to obtain an ... more

Drag force on a rigid cylinder when velocity is parallel to its axis(Slender-body theory)

In fluid dynamics and electrostatics, slender-body theory is a methodology that can be used to take advantage of the slenderness of a body to obtain an ... more

Friction Loss (turbulent flow)

In fluid flow, friction loss (or skin friction) is the loss of pressure or “head” that occurs in pipe or duct flow due to the effect of the fluid’s ... more

Head loss in terms of volumetric flow rate

Hydraulic head or piezometric head is a specific measurement of liquid pressure above a geodetic datum.
In any real moving fluid, energy is dissipated ... more

Swamee-Aggarwal Equation

Although an exact analytical solution of the Buckingham-Reiner equation can be obtained because it is a fourth order polynomial equation in f, due to ... more

Darcy friction factor - Laminar flow

In fluid dynamics, the Darcy friction factor formulae are equations that allow the calculation of the Darcy friction factor, a dimensionless quantity used ... more

Darcy friction factor - Colebrook–White equation (relative to the radius)

In fluid dynamics, the Darcy friction factor formulae are equations that allow the calculation of the Darcy friction factor, a dimensionless quantity used ... more

Darcy friction factor

In fluid dynamics, the Darcy friction factor formulae are equations that allow the calculation of the Darcy friction factor, a dimensionless quantity used ... more

Friction Loss (laminar flow)

In fluid flow, friction loss (or skin friction) is the loss of pressure or “head” that occurs in pipe or duct flow due to the effect of the fluid’s ... more

Taylor Number

In fluid dynamics, the Taylor number (Ta) is a dimensionless quantity that characterizes the importance of centrifugal “forces” or so-called ... more

...can't find what you're looking for?

Create a new formula