'

Search results

Found 1904 matches
Reynolds number (for motion of an object in a viscous fluid)

In fluid mechanics, the Reynolds number is used to help predict if flow will be laminar or turbulent. We know that the flow around a smooth, streamlined ... more

Reynolds number - Flow in a pipe with mass flow rate

For flow in a pipe or tube, the Reynolds number is generally defined as presented here.

For shapes such as squares, rectangular or annular ducts ... more

Worksheet 300

Calculate the Reynolds number N′R for a ball with a 7.40-cm diameter thrown at 40.0 m/s.

Strategy

We can use the Reynolds number equation calculate N’R , since all values in it are either given or can be found in tables of density and viscosity.

Solution

We first find the kinematic viscosity values:

Kinematic Viscosity

Substituting values into the equation for N’R yields:

Reynolds number

Discussion

This value is sufficiently high to imply a turbulent wake. Most large objects, such as airplanes and sailboats, create significant turbulence as they move. As noted before, the Bernoulli principle gives only qualitatively-correct results in such situations.

Reference : OpenStax College,College Physics. OpenStax College. 21 June 2012.
http://openstaxcollege.org/textbooks/college-physics
Creative Commons License : http://creativecommons.org/licenses/by/3.0/

Friction Loss (laminar flow)

In fluid flow, friction loss (or skin friction) is the loss of pressure or “head” that occurs in pipe or duct flow due to the effect of the fluid’s ... more

Friction Loss (turbulent flow)

In fluid flow, friction loss (or skin friction) is the loss of pressure or “head” that occurs in pipe or duct flow due to the effect of the fluid’s ... more

Reynolds number

In fluid mechanics, the Reynolds number (Re) is a dimensionless quantity that is used to help predict similar flow patterns in different fluid flow ... more

Darcy friction factor

In fluid dynamics, the Darcy friction factor formulae are equations that allow the calculation of the Darcy friction factor, a dimensionless quantity used ... more

Hagen-Poiseuille Equation

In fluid dynamics, the Hagen–Poiseuille equation, also known as the Hagen–Poiseuille law, Poiseuille law or Poiseuille equation, is a physical law that ... more

Convective heat transfer coefficient with Nusselt number for Internal/turbulent flow

Although convective heat transfer can be derived analytically through dimensional analysis, exact analysis of the boundary layer, approximate integral ... more

Settling velocity

The terminal velocity of a particle which is falling in the viscous fluid under its own weight due to gravity.
Generally, for small particles (laminar ... more

Kozeny-Carman equation

The Kozeny–Carman equation (or Carman-Kozeny equation) is a relation used in the field of fluid dynamics to calculate the pressure drop of a fluid flowing ... more

Darcy friction factor - Swamee–Jain equation

In fluid dynamics, the Darcy friction factor formulae are equations that allow the calculation of the Darcy friction factor, a dimensionless quantity used ... more

Darcy friction factor - Colebrook–White equation (relative to the radius)

In fluid dynamics, the Darcy friction factor formulae are equations that allow the calculation of the Darcy friction factor, a dimensionless quantity used ... more

Darby-Melson equation (for Buckingham-Reiner equation)

Although an exact analytical solution of the Buckingham-Reiner equation can be obtained because it is a fourth order polynomial equation in f, due to ... more

Darcy friction factor - Serghides's solution (Variable A)

In fluid dynamics, the Darcy friction factor formulae are equations that allow the calculation of the Darcy friction factor, a dimensionless quantity used ... more

Darcy friction factor - Haaland equation

In fluid dynamics, the Darcy friction factor formulae are equations that allow the calculation of the Darcy friction factor, a dimensionless quantity used ... more

Darcy friction factor - Serghides's solution (Variable B)

In fluid dynamics, the Darcy friction factor formulae are equations that allow the calculation of the Darcy friction factor, a dimensionless quantity used ... more

Darcy friction factor - Serghides's solution (Variable C)

In fluid dynamics, the Darcy friction factor formulae are equations that allow the calculation of the Darcy friction factor, a dimensionless quantity used ... more

Head loss in terms of volumetric flow rate

Hydraulic head or piezometric head is a specific measurement of liquid pressure above a geodetic datum.
In any real moving fluid, energy is dissipated ... more

Darcy friction factor - Brkić solution

In fluid dynamics, the Darcy friction factor formulae are equations that allow the calculation of the Darcy friction factor, a dimensionless quantity used ... more

Buckingham-Reiner equation (Darcy friction factor for laminar flow)

An exact description of friction loss (Darcy Weisbach equation) for Bingham plastics in fully developed laminar pipe flow was first published by ... more

Karman vortex street formula

In fluid dynamics, a Kármán vortex street is a repeating pattern of swirling vortices caused by the unsteady separation of flow of a fluid around blunt ... more

Darcy friction factor - Laminar flow

In fluid dynamics, the Darcy friction factor formulae are equations that allow the calculation of the Darcy friction factor, a dimensionless quantity used ... more

Darcy friction factor - Blasius correlation with correction for curved or helically coiled tubes

In fluid dynamics, the Darcy friction factor formulae are equations that allow the calculation of the Darcy friction factor, a dimensionless quantity used ... more

Terminal velocity (potato-shaped obgject)

In fluid dynamics, drag (sometimes called air resistance, a type of friction, or fluid resistance, another type of friction or fluid friction) is a force ... more

Darcy friction factor - Free surface flow

In fluid dynamics, the Darcy friction factor formulae are equations that allow the calculation of the Darcy friction factor, a dimensionless quantity used ... more

Darcy Weisbach equation (head loss)

In fluid dynamics, the Darcy–Weisbach equation is a phenomenological equation, which relates the head loss — or pressure loss — due to friction along a ... more

Dittus-Boelter equation - Nusselt number

In heat transfer at a boundary (surface) within a fluid, the Nusselt number (Nu) is the ratio of convective to conductive heat transfer across (normal to) ... more

Terminal velocity (creeping flow conditions)

The terminal velocity of a falling object is the velocity of the object when the sum of the drag force and buoyancy equals the downward force of gravity ... more

Roshko number

In fluid mechanics, the Roshko number is a dimensionless number describing oscillating flow mechanisms.It is related to the Strouhal number and the ... more

...can't find what you're looking for?

Create a new formula