'

Search results

Found 1101 matches
Lame's first parameter (for two-dimensional solids)

In linear elasticity, the Lame parameters are the two parameters that constitute a parametrization of the elastic moduli for homogeneous isotopic media. ... more

P-wave Velocity

P-waves are a type of elastic wave, called seismic waves in seismology, that can travel through a continuum. The continuum is made up of gases (as sound ... more

Water hammer (wave speed)

Water hammer (or, more generally, fluid hammer) is a pressure surge or wave caused when a fluid (usually a liquid but sometimes also a gas) in motion is ... more

Speed of sound in three-dimensional solids (pressure waves)

The speed of sound is the distance travelled per unit of time by a sound wave propagating through an elastic medium. Sound travels faster in liquids and ... more

Speed of sound in three-dimensional solids (shear waves)

The speed of sound is the distance travelled per unit of time by a sound wave propagating through an elastic medium. Sound travels faster in liquids and ... more

Speed of Sound in Fluids (Newton-Laplace equation )

The speed of sound is the distance travelled per unit of time by a sound wave propagating through an elastic medium.
Sound travels faster in liquids ... more

Relation among Young's modulus, Bulk modulus and Poisson's ratio

For homogeneous isotropic materials simple relations exist between elastic constants (Young’s modulus E, bulk modulus K, and Poisson’s ratio ν) ... more

Bulk Modulus - volume

The bulk modulus ( or ) of a substance measures the substance’s resistance to uniform compression. It is defined as the ratio of the infinitesimal ... more

Shear Modulus

In materials science, shear modulus or modulus of rigidity, denoted by G, or sometimes S or μ, is defined as the ratio of shear stress to the shear strain. ... more

Maszara model DCB test (The compliance of a symmetric DCB speciment)

Wafer bonds are commonly characterized by three important encapsulation parameters: bond strength, hermeticity of encapsulation and bonding induced stress. ... more

Maszara model DCB test (surface fracture energy)

Wafer bonds are commonly characterized by three important encapsulation parameters: bond strength, hermeticity of encapsulation and bonding induced ... more

Strain energy release (Irwin's modification for plane stress)

A fracture is the separation of an object or material into two, or more, pieces under the action of stress.There are three ways of applying a force to ... more

Strain energy release (Irwin's modification for plane strain)

A fracture is the separation of an object or material into two, or more, pieces under the action of stress.There are three ways of applying a force to ... more

Griffith's criterion in Linear elastic fracture mechanics (critical stress intensity factor)

Fracture mechanics is the field of mechanics concerned with the study of the propagation of cracks in materials. It uses methods of analytical solid ... more

Shear modulus (related to Young's modulus and Poisson's ratio)

The shear modulus is one of several quantities for measuring the stiffness of materials and describes the material’s response to shear stress (like ... more

Rotational stiffness ( depended on rigidity modulus of the material)

Stiffness is the rigidity of an object — the extent to which it resists deformation in response to an applied force. In general, stiffness is not the same ... more

Impact shear

Shear stress, is defined as the component of stress coplanar with a material cross section. Shear stress arises from the force vector component parallel to ... more

Spring constant

Hooke’s law is a principle of physics that states that the force F needed to extend or compress a spring by some distance X is proportional to that ... more

Micro chevron (MC) test (critical energy release rate)

The wafer bond characterization is based on different methods and tests. Wafer bonds are commonly characterized by three important encapsulation ... more

Seismic moment

Seismic moment is a quantity to measure the size of an earthquake and is proportional to the area of the rupture times the average slip that took place ... more

S-wave Velocity

A type of elastic wave, the S-wave, secondary wave, or shear wave (sometimes called an elastic S-wave) is one of the two main types of elastic body waves, ... more

Transverse wave velocity (shear wave)

A transverse (shear) wave is a moving wave that consists of oscillations occurring perpendicular (or right angled) to the direction of energy transfer. For ... more

Cantilever Euler Beam - Maximum Displacement

Euler–Bernoulli beam theory (also known as engineer’s beam theory or classical beam theory) is a simplification of the linear theory of elasticity ... more

Cantilever Euler Beam - Displacement

Euler–Bernoulli beam theory (also known as engineer’s beam theory or classical beam theory) is a simplification of the linear theory of elasticity ... more

Αxial stiffness for an element in tension

The stiffness of a body is a measure of the resistance offered by an elastic body to deformation.
Tension describes the pulling force exerted by each ... more

Time to reach specific temperature (related to Biot and Fourier numbers)

The Biot number (Bi) is a dimensionless quantity used in heat transfer calculations. Gives a simple index of the ratio of the heat transfer resistances ... more

Tuning fork (cylindrical prongs)

A tuning fork is an acoustic resonator in the form of a two-pronged fork with the prongs (tines) formed from a U-shaped bar of elastic metal (usually ... more

Young's Modulus

Young’s modulus, also known as the Tensile modulus or elastic modulus, is a measure of the stiffness of an elastic isotropic material and is a ... more

Critical Buckling Compressive Loading of a Plate

In science, buckling is a mathematical instability that leads to a failure mode.

When a structure is subjected to compressive stress, buckling may ... more

Elastic modulus of a contact area between a sphere and an elastic half-space

Contact mechanics is the study of the deformation of solids that touch each other at one or more points. Hertzian contact stress refers to the localized ... more

...can't find what you're looking for?

Create a new formula